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Abstract
In 2018, two new types of microwarchitectural side-
channel attacks were disclosed: Meltdown and 
Spectre. Meltdown allows an attacker to speculatively 
access memory that is inaccessible, while Spectre 
allows an attacker to alter the branch prediction 
structures in order to gain speculative arbitrary code 
execution. In 2019, another class of microarchitectural 
side-channel attacks was disclosed: Microarchitectural 
Data Sampling, or MDS. This attack allows an attacker 
to pick-up in-flight data from various microarchitectural 
data structures (line fill buffers or LFBs - MFBDS, load 
ports - MLPDS or store buffers - MSBDS). Until now, 
MDS and MFBDS in particular have been viewed in only 
one direction; the victim loads the secret data inside 
the LFBs, while the attacker leaks the secret data by 
issuing a load instruction which requires a microcode 
assist (for example, by accessing an invalid address). 
In this whitepaper, we present a different view of 
MFBDS whereby the attacker stores rogue data inside 
the LFBs, and the victim unwillingly uses this data 
during speculative execution. 

This new technique is called Load Value Injection, and 
the CVE assigned to it is CVE-2020-0551. The most 
straightforward example that we’ve come-up with 
for this scenario is LVI based control flow hijacking. 
The attacker sprays the LFBs with the address of a 
malicious function, and when the victim issues an 
indirect branch through memory which requires a 
microcode assist (for example, the page containing 
the destination branch address is swapped out), the 
address of the malicious function is loaded from 
the LFBs, thus leading to the attacker function being 
speculatively executed. .

Introduction
In recent years, several researchers have discovered 
and disclosed a series of vulnerabilities named 
microarchitectural side channel attacks. A side 
channel attack relies on careful measurements made 
by an attacker to determine the value of a secret 
located inside the victim memory (which is normally 
inaccessible to the attacker). The initial “wave” of 
side-channel attacks includes Meltdown [1] and 
Spectre [2]. Meltdown abuses the fact that the CPU 
continues to speculatively execute instructions beyond 
an instruction that triggered a fault (for example, a 
page-fault). Instructions following such a faulting 
instructions may be fed by the out-of-order core 
with data that would otherwise be inaccessible (for 
example, because it is located inside kernel memory). 
Spectre abuses the branch-prediction unit of modern 
CPUs to fool it into either accessing buffer data 
beyond a limit or speculatively executing a malicious 
function. L1TF [3] exploits the fact that the CPU may 
speculatively access a virtual address even if a valid 
translation does not exist for it. MDS and TAA [4] [5] 
[6] allow an attacker to access in flight data (from line 
fill buffers, store buffers or load ports) being used 
by a victim, and SWAPGS [7] is a particular example 
of Spectre, where a critical system instruction gets 
executed speculatively when not needed.

In this whitepaper, we disclose a new variant of MDS: 
Load Value Injection in the Line Fill Buffers, or LVI-
LFB for short. Researchers have previously looked 
at MDS from one direction only; the victim accesses 
the secret, which gets loaded in the MDS buffers, 
while the attacker leaks the contents of the MDS 
buffers by issuing a load instruction which requires 
microcode assists (for example, by reading an invalid 
address). However, the MDS buffers can also be 
abused the other way around; if an attacker sprays 
the MDS buffers with a particular value, a victim 
may speculatively load that particular value when 
a load instruction triggers such a microcode assist 
(for example, the load instruction triggers a fault). By 
carefully analyzing what Spectre is and what MDS is, a 
keen eye will quickly identify the root cause of the new 
vulnerability; an indirect memory branch which requires 
a microcode assist being fed stale values from the 
MDS buffers which can be controlled by an attacker, 
thus leading to speculative arbitrary code execution.
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Recap – Meltdown, Spectre & MDS
Meltdown
Memory accesses are subject to CPU access rights 
checks. Whenever an invalid access is encountered, 
the CPU would signal this using a fault which will be 
handled by the operating system. The CPU is capable 
of executing instructions out of order, meaning that a 
younger instruction may finish execution earlier than 
an older instruction that was fetched & decoded first. 
However, the results of the instructions are committed 
in program order (instruction retirement). On CPUs 
which are vulnerable to Meltdown, a load instruction that 
triggers a memory fault (for example, by accessing a 
kernel address from user-mode) may forward the result 
of the load to a younger dependent instruction, even if 
this instruction will never retire – the architectural state is 
not affected, but the caches are – the attacker can make 
fine access measurements to various memory locations 
to determine if they have been cached or not. Consider 
the following example:

    movzx   eax, byte [rdx]     ; [1]
    shl     eax, 12             ; [2]
    mov     al, [rcx + rax]     ; [3]

Assume that rdx contains a kernel address, and that 
the code is executed in user-mode. Instruction [1] will 
try to access that kernel address, which will result in 
a page-fault being generated. On CPUs affected by 
Meltdown, instruction [1] would also load the actual 
kernel value into the eax register – note that normally, 
this does not matter, as any modification made by 
instructions following [1] will be discarded (they will not 
be committed to the architectural state) due to the fault 
being generated, but the address cached by instruction 
[3] will remain, allowing an attacker to obtain the kernel 
value by measuring which offset inside the rcx buffer has 
been cached.

Spectre
Generally, indirect branches use a structure called the 
Branch Target Buffer to predict the destination address 
of an indirect branch. If the branch target address is 
mispredicted, the pipeline is flushed, and the CPU waits 
for the actual target address to be computed. If, for 
example, the target address lies in memory, the CPU 
would wait for that memory load to finish, and then it 
would start executing the code located at the address 
indicated by the loaded value. Consider the following 
example:

fnptr   dq      TargetFunction  ; [1]

    ...
    call    [rel fnptr]         ; [2]
    ...

TargetFunction:                 ; [3]
    ...

In this example, line [1] defines a function pointer which 
points to the TargetFunction. Instruction at line [2] issues 
an indirect call to the value located at address fnptr. 
The CPU attempts to predict the address instruction [2] 
tries to branch at, but eventually it has to load the actual 
memory value and check if the target was predicted 
correctly or not. If the target was not predicted correctly, 
the pipeline will be flushed, and the CPU starts executing 
the correct function, TargetFunction, located at line 3.

With Spectre v2 (Branch Target Injection), an attacker 
may pollute the Branch Target Buffer with the address 
of a malicious function. This way, the CPU encounters 
instruction [2] and predicts that the target address 
of the branch is the malicious function the attacker 
inserted inside the BTB. It starts executing the malicious 
function speculatively, and at some point, when the 
value of the fnptr has been loaded from memory and 
the branch misprediction is detected, the CPU discards 
the modifications made by the malicious function and 
will start executing the correct function. However, not 
all modifications made by the malicious function are 
properly discarded. Memory addresses that have been 
cached by the CPU remain cached, and the attacker can 
measure the access time to these memory locations to 
determine, for example, the value of a secret.
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Microarchitectural Data Sampling
Microarchitectural Data Sampling or MDS for short is a group of vulnerabilities which allow an attacker to obtain 
the value of in-flight data from several internal CPU buffers (line fill buffers, store buffers and load ports). Consider 
the instruction mov rax, [0]. This instruction accesses an address which is usually invalid. When accessing such an 
address, the CPU detects that it is invalid, and a fault is generated. In some cases, however, the CPU may forward 
stale data from within the MDS buffers, which can then be obtained by the attacker. The following code sequence is a 
general way of obtaining such data:

    movzx   eax, byte [0]       ; [1]
    shl     eax, 12             ; [2]
    mov     al, [rcx + rax]     ; [3]

Instruction at line [1] accesses an invalid address, which leads to a fault being generated. However, the CPU continues 
executing instructions speculatively even after instruction [1], until this instruction is retired, and the fault delivered. 
Up until this point, this looks like Meltdown, except instruction [1] does not access an address which is valid, but 
inaccessible to the attacker. Instead, the instruction accesses a completely invalid address. Due to the MDS bug, 
the CPU forwards stale data from the line fill buffers into the rax register, and instruction [2] shifts this byte value 12 
positions left, whereas instruction [3] would access the obtained offset into the buffer pointed by rcx. Once this gadget 
finishes executing speculatively, the attacker can measure which offset inside the rcx buffer was cached. If offset 0x0 
was cached, it means that instruction [1] loaded an in-flight value of 0, whereas if offset 0xBD000 was cached, it means 
that an in-flight value of 0xBD was loaded.

Load Value Injection in the Line Fill Buffers
Now that we understand MDS, it is clear that the classic use-case involved an active victim which accesses secret 
data that passes through the MDS buffers, and a passive attacker, which patiently sniffs data from the MDS buffers 
until obtaining the desired secret value. It is possible, however, to employ the opposite scenario: the victim is actively 
trying to execute some code, and the attacker actively fills the MDS buffers with carefully chosen values to influence 
the execution of the victim thread. To confirm this scenario, we have created a very simple PoC - a single attacker 
thread which continuously fills the line fill buffers with the address of a test variable. The test variable is not accessed 
directly by the program anywhere. After some time, the test variable is cached nonetheless, implying that it most likely 
was accessed by some other code which was fed with the test variable address from the line fill buffers following a 
faulting memory load. Once we stop the attacker thread which sprays the LFBs with the address of the test variable, we 
no longer observe it being cached, thus confirming that the source of the accesses is within code that was most likely 
executing with stale data loaded from the LFBs. 

We have identified several scenarios that might be used to abuse the LVI-LFB problem. All have one important thing 
in common: a memory load instruction which requires a microcode assist. The easiest example for such a microcode 
assists is the hardware page-walker which is performed – as an example - for addresses which are not mapped (they 
are swapped out) or lack the accessed and/or the dirty bit:

1. Influence an address that is accessed. Consider the following (victim) code example: the attacker may control the 
value loaded by instruction [1], which in-turn leads to instruction [2] further accessing that address.

    mov     rsi, [rax]          ; [1]
    mov     rdi, [rsi]          ; [2]

2. Influence the offset within an accessed buffer. Consider the following (victim) code example: the attacker may 
control an offset which is loaded by instruction [1], which is then used by instruction [2] when accessing the 
memory addresses pointed by rcx.
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    mov     edx, [rax]          ; [1]
    mov     ecx, [rcx + rdx]    ; [2]

3. Influence the result of a conditional branch. Consider the following (victim) code example: if instruction [1] 
requires an assist, it may execute with stale data fetched from the LFBs; if the attacker controls the contents of the 
LFBs, it may trick instruction [2] to branch in the desired direction.

    cmp     [rax], 1            ; [1]
    jne     target              ; [2]
    ...
target:
    ...

4. Influence the destination of an indirect branch. Consider the following (victim) code example: the attacker may 
control the destination instruction [1] will branch at. 

    call    [rax]               ; [1]

In all of these cases, we call instruction [1], which must induce a microcode assist, the pivot instruction. Other similar 
instances where the data read by the victim could influence exist as well.

Exploiting LVI-LFB: scenarios 1 & 2
Exploiting LVI-LFB in a real life scenario requires several conditions to be met. First, a victim gadget that can be used 
by the attacker to leak secret values from the victim memory is required. Second, the gadget must contain a memory 
load instruction that requires microcode assist (for example, it accesses a swapped out page). Consider the following 
hypothetical gadget: 

    mov         rax, [rcx]          ; [1]
    mov         rsi, [rax + 0]      ; [2]
    mov         rdi, [rax + 8]      ; [3]
    movzx       eax, byte [rsi]     ; [4]
    shl         eax, 12             ; [5]
    mov         rax, [rdi + rax]    ; [6]

Looking at the instructions inside this gadget, we observe that it looks extremely convenient from an attacker 
perspective, but it still has several prerequisites:

1. The address pointed by rcx in the pivot instruction [1] must induce a microcode assist;

2. A malicious address X sprayed by the attacker in the LFBs must be loaded by [1] instead;

3. X must point to a victim accessible, valid, memory address which ideally contains the address of a sensor array 
(used to determine the secret) and the address of the secret to be leaked;

4. The gadget (or a similar gadget) must exist inside the victim memory
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Exploiting LVI-LFB: scenarios 3 & 4
We have explored the scenario where we influence the destination of indirect branches, which we also call LVI based 
control flow hijacking. Although this looks like Spectre (since it speculatively hijacks the control flow), it is not a true 
Spectre, as it is data-speculation based (as is Meltdown or MDS) instead of being control-flow speculation based 
like true Spectre. LVI based control flow hijacking allows an attacker to trick the victim into speculatively executing a 
function of his choosing. This works, theoretically, across all security boundaries: process to process, user-mode to 
kernel-mode, guest-mode to root-mode, and perhaps even user-mode to enclave. 

Our PoC consists of two processes: the victim and the attacker. In this particular scenario, although the processes 
are different, they are backed by the same executable file. The attacker sprays the LFBs with the address of a function 
located inside the victim process. This function accesses a test variable, a function that is not otherwise executed. 
The victim process will execute an indirect branch through an invalid memory address, and after this branch, checks 
if the test variable is cached. Running only the victim process yields no results – the test variable is not cached since 
the target function is not executed. As soon as the attacker process - which sprays the LFBs with the address of the 
function - starts, the test variable is cached, confirming our scenario: the indirect branch was taken to a stale address 
loaded from the LFBs.

The victim process consists of the following code gadgets:
VictimFunctionFault PROC
    mfence
    mov         rax, 0000000000000000h      ; [1]
    jmp         qword ptr [rax]             ; [2]
    mfence
    ret
VictimFunctionFault ENDP
PoisonFunction PROC
    mov             rcx, 0BDBD0000h         ; [3] 
    mov             rax, [rcx]              ; [4]
    mfence
    ret
PoisonFunction ENDP

The first function, VictimFunctionFault is executed in a loop by the victim. All it does is zero out a register [1] and then 
jump to whatever lies at address 0 [2]. This code will crash by triggering a page-fault; however, due to MFBDS, stale 
data from the LFBs is used. On the sibling thread, the attacker sprays the address of PoisonFunction. This causes the 
CPU to speculatively start executing the sprayed function address, which stores the address of our test variable in a 
register [3] and then accesses it [4], causing it to be cached and allowing us to measure the access time to it and 
confirm the success of the attack.

Real-life exploit
Creating a real-life exploit poses some significant challenges:

1. Identifying a suitable gadget for one of the scenarios; this depends a lot on the victim and what code it contains; 
certain gadgets may not be available at all;

2. Making sure the pivot instruction incurs a microcode assist so it loads attacker-controlled data from the LFBs. This 
is quite challenging to do, but there are some options – one could simply wait for that page to have the accessed 
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bit cleared, and when it is accessed again, induce the microcode assist. Another way to achieve this is by forcing 
that address to be swapped out by applying high memory pressure over the system; this has, however, a severe 
disadvantage, because data that is useful for the attacker may be swapped out as well, thus rendering this method 
inefficient;

3. Finding a way to speculatively transmit the secret from the victim to the process. While transmitting the secret 
from kernel to user can be done rather easily, doing so from one process to another is more complicated. On 
Windows operating systems, dynamic libraries are loaded inside each process at the same address, and the 
backing physical pages are the same, as long as they are not written (in which case the copy-on-write mechanism 
will create a local copy). Therefore, we can use such a shared region of memory – for example, the resources 
section inside the ntdll module is read-only, and is accessed rarely enough that significant noise is not generated 
when used as a sensor for leaking the secret.

We reported the issue to Intel on the 10th of February 2020. Their response on 25th of February 2020 acknowledged 
the issue, and they stated that the embargo is applicable until 10th of March 2020. Unfortunately, the very short time 
between the reporting date and the public disclosure date did not allow us to further research this issue or finish the 
real-life exploit PoC. Only a synthetic PoC was finished for the LVI-LFB control flow hijacking scenario (available on the 
Bitdefender website). Other scenarios have been described by academia in [8], which have independently discovered 
and reported the issue to Intel in April 2019.

Mitigations
Existing mitigations for Meltdown, Spectre, and MDS are not sufficient. First, although it hijacks the control flow, LVI 
based control flow hijacking is not a true Spectre vulnerability since it does not rely on bringing the branch prediction 
unit to a known state; therefore, existing Spectre mitigations do not help with this new class of vulnerabilities. Second, 
MDS mitigations are currently not sufficient as operating systems flush the MDS buffers only when transitioning 
from a more privileged mode to a less privileged mode, in order to evict any secret that might have remained in the 
MDS buffers. To properly mitigate LVI-LFB, the operating system must also flush the MDS buffers (LFBs in particular) 
when transitioning from a less privileged mode into a more privileged mode, in order to avoid microcode assisted 
memory accesses from executing speculatively with attacker controlled data. In addition, just like classical MDS, 
disabling HT is a good idea on systems where security is critical, as would serializing all critical load operations using 
the lfence instruction. Other mitigations could involve modifications to the compilers, in order to generate code that 
is not vulnerable to such type of attacks. Intel will probably address this new type of issue in-silicon in future CPU 
generations.

In order to avoid process to process leaks via shared memory, we also propose horizontal KPTI. Currently, KPTI works 
in a vertical manner by isolating the more privileged kernel-mode from the less privileged user-mode – this way, a 
process does not have access to the kernel memory in any way. However, a malicious process could potentially leak 
sensitive data from a (potentially more privileged) victim process by using the memory that is shared between them 
(generally represented by shared libraries, such as ntdll or kernelbase on Windows systems – since they contain the 
same code & data, these modules are mapped to the same physical pages). With horizontal KPTI, processes lying in 
different security domains would have their own physical copy of the shared libraries, thus mitigating leaks via the 
shared memory channel (which can be used to transmit secrets from the victim to the attacker).
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Conclusions
We have disclosed a new perspective on MDS (MFBDS in particular) which is called LVI-LFB. Instead of leaking 
sensitive data from the LFBs, spray them with known values which get used speculatively by the victim. In addition, 
we have elaborated a particular example of LVI-LFB - which we call LVI based control flow hijacking - which allows an 
attacker to feed certain indirect branches with addresses to malicious code, and thus gain speculative arbitrary code 
execution. We have also discussed other possibilities for LVI-LFB as we think that this technique can be used to initiate 
a kernel-to-user leak, or even across other security boundaries, such as enclaves or a hypervisor. A synthetic PoC has 
been published on the main Bitdefender site.
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