
www.bitdefender.com

Security

Load Value Injection in the
Line Fill Buffers: How to Hijack
Control Flow without Spectre

WHITEPAPER

Contents
Abstract ...3

Introduction ...3

Recap – Meltdown, Spectre & MDS ...4

Meltdown ... 4

Spectre ... 4

Microarchitectural Data Sampling .. 5

Load Value Injection in the Line Fill Buffers ..5

Exploiting LVI-LFB: scenarios 3 & 4..7

Real-life exploit ..7

Mitigations ...8

Conclusions ...9

Credits ...9

References ... 10

Why Bitdefender .. 12

Proudly Serving Our Customers ...12

Trusted Security Authority ..12

Dedicated To Our +20.000 Worldwide Partners ...12

Authors:
Andrei LUȚAȘ (vlutas@bitdefender.com)
Dan LUȚAȘ (dlutas@bitdefender.com)

Bitdefender WhitepaperBitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without SpectreLoad Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

3

Abstract
In 2018, two new types of microwarchitectural side-
channel attacks were disclosed: Meltdown and
Spectre. Meltdown allows an attacker to speculatively
access memory that is inaccessible, while Spectre
allows an attacker to alter the branch prediction
structures in order to gain speculative arbitrary code
execution. In 2019, another class of microarchitectural
side-channel attacks was disclosed: Microarchitectural
Data Sampling, or MDS. This attack allows an attacker
to pick-up in-flight data from various microarchitectural
data structures (line fill buffers or LFBs - MFBDS, load
ports - MLPDS or store buffers - MSBDS). Until now,
MDS and MFBDS in particular have been viewed in only
one direction; the victim loads the secret data inside
the LFBs, while the attacker leaks the secret data by
issuing a load instruction which requires a microcode
assist (for example, by accessing an invalid address).
In this whitepaper, we present a different view of
MFBDS whereby the attacker stores rogue data inside
the LFBs, and the victim unwillingly uses this data
during speculative execution.

This new technique is called Load Value Injection, and
the CVE assigned to it is CVE-2020-0551. The most
straightforward example that we’ve come-up with
for this scenario is LVI based control flow hijacking.
The attacker sprays the LFBs with the address of a
malicious function, and when the victim issues an
indirect branch through memory which requires a
microcode assist (for example, the page containing
the destination branch address is swapped out), the
address of the malicious function is loaded from
the LFBs, thus leading to the attacker function being
speculatively executed. .

Introduction
In recent years, several researchers have discovered
and disclosed a series of vulnerabilities named
microarchitectural side channel attacks. A side
channel attack relies on careful measurements made
by an attacker to determine the value of a secret
located inside the victim memory (which is normally
inaccessible to the attacker). The initial “wave” of
side-channel attacks includes Meltdown [1] and
Spectre [2]. Meltdown abuses the fact that the CPU
continues to speculatively execute instructions beyond
an instruction that triggered a fault (for example, a
page-fault). Instructions following such a faulting
instructions may be fed by the out-of-order core
with data that would otherwise be inaccessible (for
example, because it is located inside kernel memory).
Spectre abuses the branch-prediction unit of modern
CPUs to fool it into either accessing buffer data
beyond a limit or speculatively executing a malicious
function. L1TF [3] exploits the fact that the CPU may
speculatively access a virtual address even if a valid
translation does not exist for it. MDS and TAA [4] [5]
[6] allow an attacker to access in flight data (from line
fill buffers, store buffers or load ports) being used
by a victim, and SWAPGS [7] is a particular example
of Spectre, where a critical system instruction gets
executed speculatively when not needed.

In this whitepaper, we disclose a new variant of MDS:
Load Value Injection in the Line Fill Buffers, or LVI-
LFB for short. Researchers have previously looked
at MDS from one direction only; the victim accesses
the secret, which gets loaded in the MDS buffers,
while the attacker leaks the contents of the MDS
buffers by issuing a load instruction which requires
microcode assists (for example, by reading an invalid
address). However, the MDS buffers can also be
abused the other way around; if an attacker sprays
the MDS buffers with a particular value, a victim
may speculatively load that particular value when
a load instruction triggers such a microcode assist
(for example, the load instruction triggers a fault). By
carefully analyzing what Spectre is and what MDS is, a
keen eye will quickly identify the root cause of the new
vulnerability; an indirect memory branch which requires
a microcode assist being fed stale values from the
MDS buffers which can be controlled by an attacker,
thus leading to speculative arbitrary code execution.

Bitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

4

Recap – Meltdown, Spectre & MDS
Meltdown
Memory accesses are subject to CPU access rights
checks. Whenever an invalid access is encountered,
the CPU would signal this using a fault which will be
handled by the operating system. The CPU is capable
of executing instructions out of order, meaning that a
younger instruction may finish execution earlier than
an older instruction that was fetched & decoded first.
However, the results of the instructions are committed
in program order (instruction retirement). On CPUs
which are vulnerable to Meltdown, a load instruction that
triggers a memory fault (for example, by accessing a
kernel address from user-mode) may forward the result
of the load to a younger dependent instruction, even if
this instruction will never retire – the architectural state is
not affected, but the caches are – the attacker can make
fine access measurements to various memory locations
to determine if they have been cached or not. Consider
the following example:

 movzx eax, byte [rdx] ; [1]
 shl eax, 12 ; [2]
 mov al, [rcx + rax] ; [3]

Assume that rdx contains a kernel address, and that
the code is executed in user-mode. Instruction [1] will
try to access that kernel address, which will result in
a page-fault being generated. On CPUs affected by
Meltdown, instruction [1] would also load the actual
kernel value into the eax register – note that normally,
this does not matter, as any modification made by
instructions following [1] will be discarded (they will not
be committed to the architectural state) due to the fault
being generated, but the address cached by instruction
[3] will remain, allowing an attacker to obtain the kernel
value by measuring which offset inside the rcx buffer has
been cached.

Spectre
Generally, indirect branches use a structure called the
Branch Target Buffer to predict the destination address
of an indirect branch. If the branch target address is
mispredicted, the pipeline is flushed, and the CPU waits
for the actual target address to be computed. If, for
example, the target address lies in memory, the CPU
would wait for that memory load to finish, and then it
would start executing the code located at the address
indicated by the loaded value. Consider the following
example:

fnptr dq TargetFunction ; [1]

 ...
 call [rel fnptr] ; [2]
 ...

TargetFunction: ; [3]
 ...

In this example, line [1] defines a function pointer which
points to the TargetFunction. Instruction at line [2] issues
an indirect call to the value located at address fnptr.
The CPU attempts to predict the address instruction [2]
tries to branch at, but eventually it has to load the actual
memory value and check if the target was predicted
correctly or not. If the target was not predicted correctly,
the pipeline will be flushed, and the CPU starts executing
the correct function, TargetFunction, located at line 3.

With Spectre v2 (Branch Target Injection), an attacker
may pollute the Branch Target Buffer with the address
of a malicious function. This way, the CPU encounters
instruction [2] and predicts that the target address
of the branch is the malicious function the attacker
inserted inside the BTB. It starts executing the malicious
function speculatively, and at some point, when the
value of the fnptr has been loaded from memory and
the branch misprediction is detected, the CPU discards
the modifications made by the malicious function and
will start executing the correct function. However, not
all modifications made by the malicious function are
properly discarded. Memory addresses that have been
cached by the CPU remain cached, and the attacker can
measure the access time to these memory locations to
determine, for example, the value of a secret.

Bitdefender WhitepaperBitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without SpectreLoad Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

5

Microarchitectural Data Sampling
Microarchitectural Data Sampling or MDS for short is a group of vulnerabilities which allow an attacker to obtain
the value of in-flight data from several internal CPU buffers (line fill buffers, store buffers and load ports). Consider
the instruction mov rax, [0]. This instruction accesses an address which is usually invalid. When accessing such an
address, the CPU detects that it is invalid, and a fault is generated. In some cases, however, the CPU may forward
stale data from within the MDS buffers, which can then be obtained by the attacker. The following code sequence is a
general way of obtaining such data:

 movzx eax, byte [0] ; [1]
 shl eax, 12 ; [2]
 mov al, [rcx + rax] ; [3]

Instruction at line [1] accesses an invalid address, which leads to a fault being generated. However, the CPU continues
executing instructions speculatively even after instruction [1], until this instruction is retired, and the fault delivered.
Up until this point, this looks like Meltdown, except instruction [1] does not access an address which is valid, but
inaccessible to the attacker. Instead, the instruction accesses a completely invalid address. Due to the MDS bug,
the CPU forwards stale data from the line fill buffers into the rax register, and instruction [2] shifts this byte value 12
positions left, whereas instruction [3] would access the obtained offset into the buffer pointed by rcx. Once this gadget
finishes executing speculatively, the attacker can measure which offset inside the rcx buffer was cached. If offset 0x0
was cached, it means that instruction [1] loaded an in-flight value of 0, whereas if offset 0xBD000 was cached, it means
that an in-flight value of 0xBD was loaded.

Load Value Injection in the Line Fill Buffers
Now that we understand MDS, it is clear that the classic use-case involved an active victim which accesses secret
data that passes through the MDS buffers, and a passive attacker, which patiently sniffs data from the MDS buffers
until obtaining the desired secret value. It is possible, however, to employ the opposite scenario: the victim is actively
trying to execute some code, and the attacker actively fills the MDS buffers with carefully chosen values to influence
the execution of the victim thread. To confirm this scenario, we have created a very simple PoC - a single attacker
thread which continuously fills the line fill buffers with the address of a test variable. The test variable is not accessed
directly by the program anywhere. After some time, the test variable is cached nonetheless, implying that it most likely
was accessed by some other code which was fed with the test variable address from the line fill buffers following a
faulting memory load. Once we stop the attacker thread which sprays the LFBs with the address of the test variable, we
no longer observe it being cached, thus confirming that the source of the accesses is within code that was most likely
executing with stale data loaded from the LFBs.

We have identified several scenarios that might be used to abuse the LVI-LFB problem. All have one important thing
in common: a memory load instruction which requires a microcode assist. The easiest example for such a microcode
assists is the hardware page-walker which is performed – as an example - for addresses which are not mapped (they
are swapped out) or lack the accessed and/or the dirty bit:

1. Influence an address that is accessed. Consider the following (victim) code example: the attacker may control the
value loaded by instruction [1], which in-turn leads to instruction [2] further accessing that address.

 mov rsi, [rax] ; [1]
 mov rdi, [rsi] ; [2]

2. Influence the offset within an accessed buffer. Consider the following (victim) code example: the attacker may
control an offset which is loaded by instruction [1], which is then used by instruction [2] when accessing the
memory addresses pointed by rcx.

Bitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

6

 mov edx, [rax] ; [1]
 mov ecx, [rcx + rdx] ; [2]

3. Influence the result of a conditional branch. Consider the following (victim) code example: if instruction [1]
requires an assist, it may execute with stale data fetched from the LFBs; if the attacker controls the contents of the
LFBs, it may trick instruction [2] to branch in the desired direction.

 cmp [rax], 1 ; [1]
 jne target ; [2]
 ...
target:
 ...

4. Influence the destination of an indirect branch. Consider the following (victim) code example: the attacker may
control the destination instruction [1] will branch at.

 call [rax] ; [1]

In all of these cases, we call instruction [1], which must induce a microcode assist, the pivot instruction. Other similar
instances where the data read by the victim could influence exist as well.

Exploiting LVI-LFB: scenarios 1 & 2
Exploiting LVI-LFB in a real life scenario requires several conditions to be met. First, a victim gadget that can be used
by the attacker to leak secret values from the victim memory is required. Second, the gadget must contain a memory
load instruction that requires microcode assist (for example, it accesses a swapped out page). Consider the following
hypothetical gadget:

 mov rax, [rcx] ; [1]
 mov rsi, [rax + 0] ; [2]
 mov rdi, [rax + 8] ; [3]
 movzx eax, byte [rsi] ; [4]
 shl eax, 12 ; [5]
 mov rax, [rdi + rax] ; [6]

Looking at the instructions inside this gadget, we observe that it looks extremely convenient from an attacker
perspective, but it still has several prerequisites:

1. The address pointed by rcx in the pivot instruction [1] must induce a microcode assist;

2. A malicious address X sprayed by the attacker in the LFBs must be loaded by [1] instead;

3. X must point to a victim accessible, valid, memory address which ideally contains the address of a sensor array
(used to determine the secret) and the address of the secret to be leaked;

4. The gadget (or a similar gadget) must exist inside the victim memory

Bitdefender WhitepaperBitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without SpectreLoad Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

7

Exploiting LVI-LFB: scenarios 3 & 4
We have explored the scenario where we influence the destination of indirect branches, which we also call LVI based
control flow hijacking. Although this looks like Spectre (since it speculatively hijacks the control flow), it is not a true
Spectre, as it is data-speculation based (as is Meltdown or MDS) instead of being control-flow speculation based
like true Spectre. LVI based control flow hijacking allows an attacker to trick the victim into speculatively executing a
function of his choosing. This works, theoretically, across all security boundaries: process to process, user-mode to
kernel-mode, guest-mode to root-mode, and perhaps even user-mode to enclave.

Our PoC consists of two processes: the victim and the attacker. In this particular scenario, although the processes
are different, they are backed by the same executable file. The attacker sprays the LFBs with the address of a function
located inside the victim process. This function accesses a test variable, a function that is not otherwise executed.
The victim process will execute an indirect branch through an invalid memory address, and after this branch, checks
if the test variable is cached. Running only the victim process yields no results – the test variable is not cached since
the target function is not executed. As soon as the attacker process - which sprays the LFBs with the address of the
function - starts, the test variable is cached, confirming our scenario: the indirect branch was taken to a stale address
loaded from the LFBs.

The victim process consists of the following code gadgets:
VictimFunctionFault PROC
 mfence
 mov rax, 0000000000000000h ; [1]
 jmp qword ptr [rax] ; [2]
 mfence
 ret
VictimFunctionFault ENDP
PoisonFunction PROC
 mov rcx, 0BDBD0000h ; [3]
 mov rax, [rcx] ; [4]
 mfence
 ret
PoisonFunction ENDP

The first function, VictimFunctionFault is executed in a loop by the victim. All it does is zero out a register [1] and then
jump to whatever lies at address 0 [2]. This code will crash by triggering a page-fault; however, due to MFBDS, stale
data from the LFBs is used. On the sibling thread, the attacker sprays the address of PoisonFunction. This causes the
CPU to speculatively start executing the sprayed function address, which stores the address of our test variable in a
register [3] and then accesses it [4], causing it to be cached and allowing us to measure the access time to it and
confirm the success of the attack.

Real-life exploit
Creating a real-life exploit poses some significant challenges:

1. Identifying a suitable gadget for one of the scenarios; this depends a lot on the victim and what code it contains;
certain gadgets may not be available at all;

2. Making sure the pivot instruction incurs a microcode assist so it loads attacker-controlled data from the LFBs. This
is quite challenging to do, but there are some options – one could simply wait for that page to have the accessed

Bitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

8

bit cleared, and when it is accessed again, induce the microcode assist. Another way to achieve this is by forcing
that address to be swapped out by applying high memory pressure over the system; this has, however, a severe
disadvantage, because data that is useful for the attacker may be swapped out as well, thus rendering this method
inefficient;

3. Finding a way to speculatively transmit the secret from the victim to the process. While transmitting the secret
from kernel to user can be done rather easily, doing so from one process to another is more complicated. On
Windows operating systems, dynamic libraries are loaded inside each process at the same address, and the
backing physical pages are the same, as long as they are not written (in which case the copy-on-write mechanism
will create a local copy). Therefore, we can use such a shared region of memory – for example, the resources
section inside the ntdll module is read-only, and is accessed rarely enough that significant noise is not generated
when used as a sensor for leaking the secret.

We reported the issue to Intel on the 10th of February 2020. Their response on 25th of February 2020 acknowledged
the issue, and they stated that the embargo is applicable until 10th of March 2020. Unfortunately, the very short time
between the reporting date and the public disclosure date did not allow us to further research this issue or finish the
real-life exploit PoC. Only a synthetic PoC was finished for the LVI-LFB control flow hijacking scenario (available on the
Bitdefender website). Other scenarios have been described by academia in [8], which have independently discovered
and reported the issue to Intel in April 2019.

Mitigations
Existing mitigations for Meltdown, Spectre, and MDS are not sufficient. First, although it hijacks the control flow, LVI
based control flow hijacking is not a true Spectre vulnerability since it does not rely on bringing the branch prediction
unit to a known state; therefore, existing Spectre mitigations do not help with this new class of vulnerabilities. Second,
MDS mitigations are currently not sufficient as operating systems flush the MDS buffers only when transitioning
from a more privileged mode to a less privileged mode, in order to evict any secret that might have remained in the
MDS buffers. To properly mitigate LVI-LFB, the operating system must also flush the MDS buffers (LFBs in particular)
when transitioning from a less privileged mode into a more privileged mode, in order to avoid microcode assisted
memory accesses from executing speculatively with attacker controlled data. In addition, just like classical MDS,
disabling HT is a good idea on systems where security is critical, as would serializing all critical load operations using
the lfence instruction. Other mitigations could involve modifications to the compilers, in order to generate code that
is not vulnerable to such type of attacks. Intel will probably address this new type of issue in-silicon in future CPU
generations.

In order to avoid process to process leaks via shared memory, we also propose horizontal KPTI. Currently, KPTI works
in a vertical manner by isolating the more privileged kernel-mode from the less privileged user-mode – this way, a
process does not have access to the kernel memory in any way. However, a malicious process could potentially leak
sensitive data from a (potentially more privileged) victim process by using the memory that is shared between them
(generally represented by shared libraries, such as ntdll or kernelbase on Windows systems – since they contain the
same code & data, these modules are mapped to the same physical pages). With horizontal KPTI, processes lying in
different security domains would have their own physical copy of the shared libraries, thus mitigating leaks via the
shared memory channel (which can be used to transmit secrets from the victim to the attacker).

Bitdefender WhitepaperBitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without SpectreLoad Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

9

Conclusions
We have disclosed a new perspective on MDS (MFBDS in particular) which is called LVI-LFB. Instead of leaking
sensitive data from the LFBs, spray them with known values which get used speculatively by the victim. In addition,
we have elaborated a particular example of LVI-LFB - which we call LVI based control flow hijacking - which allows an
attacker to feed certain indirect branches with addresses to malicious code, and thus gain speculative arbitrary code
execution. We have also discussed other possibilities for LVI-LFB as we think that this technique can be used to initiate
a kernel-to-user leak, or even across other security boundaries, such as enclaves or a hypervisor. A synthetic PoC has
been published on the main Bitdefender site.

Credits
We would like to credit the researchers who first reported this issue to Intel: Jo Van Bulck, Daniel Moghimi, Michael
Schwarz, Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens and
we would like to thank them for their cooperation on this issue.

Bitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

10

References

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom and M.
Hamburg, "Meltdown: Reading Kernel Memory from User Space," Proceedings of the 27th USENIX Conference on Secu-
rity Symposium, https://meltdownattack.com/meltdown.pdf, 2018.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz and Y. Yarom, "Spec-
tre Attacks: Exploiting Speculative Execution," CoRR, https://spectreattack.com/spectre.pdf, 2018.

[3] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch and Y.
Yarom, "Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient," https://foreshadowattack.eu/fore-
shadow-NG.pdf, 2018.

[4] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin, D. Gruss, F. Piessens, B. Sunar and Y. Yarom, "Fall-
out: Reading Kernel Writes From User Space," https://mdsattacks.com/files/fallout.pdf, 2019.

[5] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher and D. Gruss, "ZombieLoad: Cross-Privi-
lege-Boundary Data Sampling," https://zombieloadattack.com/zombieload.pdf, 2019.

[6] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi, H. Bos and C. Giuffrida, "RIDL: Rogue In-Flight
Data Load," https://mdsattacks.com/files/ridl.pdf, 2019.

[7] A. Lutas and D. Lutas, "Bypassing KPTI Using the Speculative Behavior of the SWAPGS Instruction," Bitdefender, 2019.
[Online]. Available: https://businessresources.bitdefender.com/hubfs/noindex/Bitdefender-WhitePaper-SWAPGS.pdf.
[Accessed 27 02 2020].

[8] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yarom, B. Sunar, D. Gruss and F. Piessens, "LVI:
Hijacking Transient Execution through Microarchitectural Load Value Injection," in 41st IEEE Symposium on Security and
Privacy, San Francisco, 2020.

[9] Intel, "Intel SA 00334," Intel, 10 03 2020. [Online]. Available: https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00334.html. [Accessed 10 03 2020].

[10] Intel, "Deep Dive Load Value Injection," Intel, 10 03 2020. [Online]. Available: https://software.intel.com/security-soft-
ware-guidance/insights/deep-dive-load-value-injection. [Accessed 10 03 2020].

[11] D. Lutas and A. Lutas, "Security implications of speculatively executing segmentation related instructions on In-
tel CPUs," Bitdefender, 2019. [Online]. Available: https://businessresources.bitdefender.com/hubfs/noindex/
Bitdefender-WhitePaper-INTEL-CPUs.pdf?utm_campaign=swapgs&utm_source=web&adobe_mc=MCMID%
3D75629865980736119172972677486032326210%7CMCORGID%3D0E920C0F53DA9E9B0A490D45%2540Ado-
beOrg%7CTS%3D1582795014. [Accessed 27 02 2020].

Bitdefender WhitepaperBitdefender Whitepaper
Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without SpectreLoad Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre

11

Bi
td

ef
en

de
r-W

hi
te

pa
pe

r-L
VI

LF
B-

cr
ea

t4
31

2-
en

_E
N

03
/0

5/
20

M
ar

ch
 9

, 2
02

0
9:

34
 a

m
03

/0
9/

20

Founded 2001, Romania
Number of employees 1800+

Headquarters
Enterprise HQ – Santa Clara, CA, United States
Technology HQ – Bucharest, Romania

WORLDWIDE OFFICES
USA & Canada: Ft. Lauderdale, FL | Santa Clara, CA | San Antonio, TX |
Toronto, CA
Europe: Copenhagen, DENMARK | Paris, FRANCE | München, GERMANY |
Milan, ITALY | Bucharest, Iasi, Cluj, Timisoara, ROMANIA | Barcelona, SPAIN
| Dubai, UAE | London, UK | Hague, NETHERLANDS
Australia: Sydney, Melbourne

UNDER THE SIGN OF THE WOLF

A trade of brilliance, data security is an industry where only the clearest view, sharpest mind and deepest insight can
win — a game with zero margin of error. Our job is to win every single time, one thousand times out of one thousand,
and one million times out of one million.

And we do. We outsmart the industry not only by having the clearest view, the sharpest mind and the deepest insight,
but by staying one step ahead of everybody else, be they black hats or fellow security experts. The brilliance of our
collective mind is like a luminous Dragon-Wolf on your side, powered by engineered intuition, created to guard against
all dangers hidden in the arcane intricacies of the digital realm.

This brilliance is our superpower and we put it at the core of all our game-changing products and solutions.

Proudly Serving Our Customers
Bitdefender provides solutions and services for small business and medium
enterprises, service providers and technology integrators. We take pride in
the trust that enterprises such as Mentor, Honeywell, Yamaha, Speedway,
Esurance or Safe Systems place in us.

Leader in Forrester’s inaugural Wave™ for Cloud Workload Security

NSS Labs “Recommended” Rating in the NSS Labs AEP Group Test

SC Media Industry Innovator Award for Hypervisor Introspection, 2nd Year in
a Row

Gartner® Representative Vendor of Cloud-Workload Protection Platforms

Trusted Security Authority
Bitdefender is a proud technology alliance partner to major virtualization vendors, directly contributing to the development of secure ecosystems with VMware,
Nutanix, Citrix, Linux Foundation, Microsoft, AWS, and Pivotal.

Through its leading forensics team, Bitdefender is also actively engaged in countering international cybercrime together with major law enforcement agencies
such as FBI and Europol, in initiatives such as NoMoreRansom and TechAccord, as well as the takedown of black markets such as Hansa. Starting in 2019,
Bitdefender is also a proudly appointed CVE Numbering Authority in MITRE Partnership.

Dedicated To Our +20.000 Worldwide Partners
A channel-exclusive vendor, Bitdefender is proud to share success with tens of
thousands of resellers and distributors worldwide.

CRN 5-Star Partner, 4th Year in a Row. Recognized on CRN’s Security 100 List. CRN Cloud
Partner, 2nd year in a Row

More MSP-integrated solutions than any other security vendor

3 Bitdefender Partner Programs - to enable all our partners – resellers, service providers
and hybrid partners – to focus on selling Bitdefender solutions that match their own
specializations

RECOGNIZED BY LEADING ANALYSTS AND INDEPENDENT TESTING ORGANIZATIONS TECHNOLOGY ALLIANCES

Why Bitdefender

	￼Abstract
	￼Introduction
	￼Recap – Meltdown, Spectre & MDS
	Meltdown
	Spectre
	Microarchitectural Data Sampling

	￼Load Value Injection in the Line Fill Buffers
	￼Exploiting LVI-LFB: scenarios 3 & 4
	￼Real-life exploit
	￼Mitigations
	￼Conclusions
	￼Credits
	￼References
	￼Why Bitdefender
	Proudly Serving Our Customers
	Trusted Security Authority
	Dedicated To Our +20.000 Worldwide Partners

