
White Paper

Security implications of
speculatively executing
segmentation related
instructions on Intel CPUs

[2]

White Paper

Authors:

Dan LUȚAȘ (dlutas@bitdefender.com),
Andrei LUȚAȘ (vlutas@bitdefender.com)

Contents
Abstract ___ 3

Security implications __ 3

Mitigations __ 7

Conclusions ___ 8

Responsible Disclosure __ 8

References : ___ 9

Appendix A ___ 10

mailto:dlutas@bitdefender.com
mailto:vlutas@bitdefender.com

[3]

White Paper

Abstract

During speculative execution, after loading the GS or FS segment registers with an invalid segment selector (for example, in
Ring-3 with a selector that points to a Data (or Code or Task) segment with DPL 0, or with an segment selector pointing outside
GDT limit), and then subsequently using that segment in further speculatively executed memory-accessing instructions, Intel®
CPUs use the previously stored segment base address of the segment register to compute the linear address used for memory
addressing.

In addition, a value written speculatively to the base of a segment register survives instruction retirement and can be retrieved
at a later time, by loading an invalid segment descriptor into that segment register. This behavior creates the opportunity for
a microarchitectural side-channel that can be used, in some cases, to retrieve general purpose register values across different
security domains.

These findings were responsibly disclosed to Intel. In the following sections, we explore the details behind speculatively executing
segmentation related instructions.

Security implications
1. Retrieval of the previously stored GS or FS base addresses and subvert-

ing KASLR
Successful use of this flaw makes it possible to leak the content (actual value) of the IA32_KERNEL_GS_BASE Model Specific
Register (MSR). Assume the following function is run in user-mode (CPL3) on Windows 10 x64 RS4 updated to August 2018
patch level.

leak_kernel_gs_base_byte PROC FRAME
.endprolog
mov rax, [0] ;(1)
mov r9d, 0xFFFF ;(2)
mov gs, r9d ;(3)
rdgsbase rax ;(4)
shr rax, cl ;(5)
and rax, 0xFF ;(6)
shl rax, 0xC ;(7)
mov rax, qword [rdx + rax] ;(8)
ret

leak_kernel_gs_base_byte ENDP

On entry, CL contains the offset of the byte we want to retrieve from the MSR and RDX contains the address of the probe buffer
(we use a classical FLUSH+RELOAD attack [3] to retrieve the value).

First, we force a page-fault (line 1) so the next instructions (2-8) will be executed speculatively by the CPU. We load an invalid
selector in the GS segment register at line 3, then we read the GS segment base (line 4). At this point, we would expect RAX to
contain the value of the IA32_GS_BASE MSR, but it contains instead the value of the IA32_KERNEL_GS_BASE MSR, as a weird
side-effect of previously loading an invalid segment selector into the GS segment register.

In the case of Windows operating systems, it is also possible to leak memory contents from the Kernel Process Control Region
(KPCR), because the KPCR base address is stored in the IA32_KERNEL_GS_BASE MSR. The KPCR structure is not protected by
KVA Shadow – Microsoft’s implementation of KPTI - and, because it contains kernel pointers, it can be used to de-randomize

[4]

White Paper

KASLR on Windows OSes (please note “that KVA shadow does not protect against attacks against kernel ASLR using speculative
side channels”, citing Microsoft’s KVA Shadow implementation details [4]). The following function exemplifies this:

leak_byte_from_kpcr PROC FRAME
.endprolog

mov rax, [0] ;; (1)
push 018H ;; (2) 0x18 is on Win10 x64 RS4 the selector for Data Segment,DPL = 0
pop gs ;; (3)
movzx rax, byte ptr gs:[rdx] ;; (4)
shl rax, 0CH ;; (5)
mov r8, qword ptr [rcx + rax] ;; (6)
ret

leak_byte_from_kpcr ENDP

On entry, RDX contains the offset we want to access from GS and RCX points to the beginning of the probe buffer. We first force
a page fault (line 1). The following instructions (2 - 6) are speculatively executed. On line 3, we load the GS register with the 0x18
segment selector (which, on Windows x64 is a Data Segment with DPL 0) and then read the byte at GS:offset in line 4 into RAX.

At this point, we would expect that the address used to access memory would be [GS.base + rdx], but it is instead [IA32_KERNEL_
GS_BASE + rdx], as a side-effect of previously loading the PL 0 segment into GS (in line 3). This has the effect of leaking kernel-
mode memory (for example, from KPCR on Windows) directly into unprivileged user-mode processes.

Next, as in the usual Flush+Reload, we use the value that we read to access the probe buffer (lines 5,6), resulting in loading one
of the probing buffer’s pages into L1 cache. Later, we probe the buffer to see which part of the page was brought into L1 data
cache, thus deriving the contents of the byte.

We tested both scenarios on the following hardware: Dell Latitude E5590 Laptop, with an Intel® Core™ i7-8650U Kaby Lake R CPU
(fully updated at microcode level as per 16 Aug 2018); Dell Latitude E5570 Laptop with an Intel® Core™ i7-6600U Skylake CPU. All
our tests were performed with Windows 10 RS4 x64, with Microsoft Windows patch level of August 2018. Both systems had KVA
Shadow present and enabled. We ran the scenarios as ring-3 processes under normal user accounts (no Administrator rights).

On both of these systems we successfully leaked the contents of the IA32_KERNEL_GS_BASE MSR and 16 bytes from
KPCR:0x7000 (inside KPCR, at offset 0x7000 is the KernelDirectoryTableBase, and at 0x7008 is the RspBaseShadow).

We also obtained the same results on “no-name” (i.e. custom-built) platforms with the following CPUs: Intel® Core™ i7-3720QM
Ivy Bridge, Intel® Core™ i3-4170 Haswell, Intel® Core™ i7-4510U Haswell.

On one of the tested systems (Dell Latitude E5570), we were able to leak only the KernelDirectoryTableBase and RspBaseShadow. On
the other system (Dell Latitude E5590, Intel® Core™ i7-8650U KabyLake R), we managed to leak, besides KernelDirectoryTableBase
and RspBaseShadow, other fields from KPCR (gs:180, gs:8). We were even able to leak a direct pointer into ntoskrnl, thus bypassing
KASLR. The leaking seems to be related to the presence of KPCR data in L1 cache; in some models more data remains cached
(E5590) while in others (E5570) less. However, in our opinion, with some more engineering to bring KPCR data into L1 cache and
keep it there, the PoC can be made to leak the entire KPCR.

2. Leaking general-purpose register contents across privilege boundaries
(ring3-ring0).

We discovered that the results of speculative writes to FS or GS segment base addresses (using WRFSBASE/Wrfsbase reg)
survive after speculative execution finishes and the values written speculatively can be later retrieved during another speculative
sequence (by loading an invalid selector into FS or GS segment registers and then using RDFSBASE/RDGSBASE to read the
segment’s base address). Please see Appendix A for an example output from one of our test systems.

This behavior can be abused to leak, in specific circumstances, the contents of CPU general-purpose registers (RAX, RBX, RCX
etc) from ring-0 into ring-3 (it doesn’t work for VMM to guest, or SMM to non-SMM mode). We implemented a PoC for leaking

[5]

White Paper

from ring-0 into ring-3 but it is highly customized (based on a toy-hypervisor project, in which we control every aspect of the
platform, including having own interrupt handling code).

On systems that don’t implement Return Stack Buffer mitigations (such as RSB stuffing [1]), we can force such speculative
writes (WRFSBASE/Wrfsbase reg) to take place by directly polluting the CPU’s RSB entries [2].

Consider the following synthetic example:
external_interrupt_handler PROC FRAME
.endprolog

 ;; construct a trap-frame, save registers etc
 ...
 mov r15, 0xaabbccdd
 mov rax, qword [rbp]
 push rax
 ret

external_interrupt_handler ENDP

In the example, an interrupt handler executing in ring-0 uses a push rax; ret sequence to divert the execution flow to another
location. Intel® CPUs that use the RSB to predict where the address the execution will continue after the return will mispredict
the actual address (given in rax) and speculatively execute the next instructions from the address currently contained at the top
of the RSB.

Next, consider the following ring-3 code that directly pollutes the RSB with the address of a ring-3 wrfsbase r15 instruction.
...
call setup_target ;(1)

;; speculation window – the following instructions will be speculatively executed

wrfsbase r15

capture_execution:
 pause
 jmp capture_execution

setup_target:

 lea rax, [rel actual_return]
 mov [rsp], rax
	 clflush					[rsp]
 mfence
 retn ;(2)

actual_return:
...

The call at (1) will place the return address of wrfsbase r15 at the top of the RSB. If, after the call instruction retires, an external
interrupt causes execution to transfer to ring-0 inside the external_interrupt_handler the top of the RSB will still contain
the ring-3 address of wrfsbase r15. When execution in ring-0 reaches the ret, assuming no other mismatches exist between call
and ret instructions, the CPU will fetch the return address from the top of the RSB and speculatively execute (while in ring-0)
the wrfsbase r15 instruction from ring-3, causing the contents of the R15 to be transferred into the shadow portion of the FS
segment register. Then, back in user-mode, the kernel-mode content of the R15 register (0xaabbccdd) can be retrieved by using
the code from leak_kernel_gs_base_byte (the only change being the use of rdfsbase rax instead of rdgsbase rax).

For this attack to work in real-life, three conditions must be fulfilled: (1) the more-privileged code must contain constructs that
cause mismatches between calls and returns; (2) SMEP must be disabled (since the ret inside external_interrupt_handler

[6]

White Paper

speculatively returns to user-mode) and (3) the OS should not contain mitigations specific to RSB (such as RSB stuffing). We
note that up-to-date Microsoft Windows and Linux actively use SMEP (and SMAP in the case of Linux) and implement RSB
stuffing, thus our attack does not work across different privilege levels on these operating systems.

3. Intel® Software Guard Extension (SGX)

If an SGX enclave explicitly modifies the FS segment base address (by using WRFSBASE reg), the enclave written address can
be retrieved outside the enclave by using the same sequence of speculatively executed operations (loading an invalid selector in
FS segment and using RDFSBASE to retrieve the segment’s address).

4. Store-to-Load Forwarding works on descriptor loads

Speculatively modifying a GDT or LDT entry and then loading that descriptor by doing a segment register load leads to the
possibility of bypassing some aspects of segment-based memory addressing. Let’s consider the following example (the code
snippet is expected to be executed speculatively): assume the register EDI contains the base address of the Global Descriptor
Table or Local Descriptor Table register. In addition, consider the pair EDX:EAX contains 0 (or whatever value we expect to be
present inside the entry we want to modify), and assume the pair ECX:EBX contains a valid descriptor; the following code will
speculatively load the descriptor contained in ECX:EBX inside the ES segment register:

; Speculative execution
mov eax, old_descriptor_low
mov edx, old_descriptor_high
mov ebx, new_descriptor_low
mov ecx, new_descriptor_high
cmpchg8b [edi + 0x100] ; (1)
mov eax, 0x103 ; (2)
mov es, eax ; (3)

The first instruction (1) atomically stores the new descriptor from ECX:EBX inside entry 0x100 of the GDT (assuming it is within
the GDT limit – this is the case on 32 bit Windows, where the GDT limit is a generous 0x3FF). The second instruction (2) loads
the selector index 0x103 into the register EAX, only to be loaded into the ES register by the third (3) instruction. Subsequent
accesses made using the ES segment register will use the descriptor which we’ve speculatively stored in entry 0x103. This
method works for both GDT and LDT, it works for both already valid and unused descriptor entries. Although the attached PoC
is designed for 32 bit Windows, we also observed this behavior on 64 bit Windows when trying to load invalid descriptors into
the FS/GS register; however, it seems more likely/more useful to use this on 32 bit systems, where segmentation is not almost
entirely disabled.

The immediate implications are obvious: bypass segment base & limit checks, although on modern operating systems the
impact may be reduced since they use flat address spaces. In addition, this may have impact in other areas, such as the values
loaded from the TSS (for example, I/O bitmap or interrupt redirection map?), though we couldn’t reproduce any odd behavior here
either, but maybe this should be considered as well. However, given the most recent developments related to the MDS class of
vulnerabilities, this may have a larger impact when combined with MSBDS, although we can’t confirm this and we don’t have a
PoC in this direction.

We confirm the described behavior on the following CPUs, in 32 bit Windows OS (doesn’t matter the version – validated on 7 x86,
8 x86, 10 RS4 x86, 10 RS5 x86): Intel Sandy Bridge i7-2600, Intel Haswell i7-4770, Intel SkyLake i5-6600K, Intel KabyLake i7-7700.

5. Potential KPTI bypass

Observing that in ring-3, on speculative path, after causing a General Protection (GP) exception on the instruction loading the GS
segment, further memory loads (via gs:[offset]) use the IA32_KERNEL_GS_BASE for forming the linear address, we found that
the same applies vice-versa for ring-0.

That is, if we can force code executing in ring-0, on speculative path, to cause a GP on loading the GS segment, further memory
loads via gs:[offset] will use the IA32_GS_BASE for forming the linear address. Because IA32_GS_BASE can be controlled by
user-mode (via wrgsbase), a ring-3 code can force the kernel to speculatively perform reads from arbitrary memory addresses
(including ring-0 only accessible addresses). And if we can force this speculative execution to happen after the kernel moved to
its KPTI ring-0 pages, we obtain an arbitrary read primitive of the whole kernel memory, defeating the KPTI mitigations.

[7]

White Paper

We tested this scenario with a synthetic use-case (minimal x64 code that, in ring-0, speculatively executes, in the shadow of a
page-fault, the following code):

PROC_FRAME func
[endprolog]

xbegin dword near _txnL61
mov rax, [0]
mov r9d, 0xFFFF
mov gs, r9d
rdgsbase rax
shr rax, cl
and rax, 0xFF
shl rax, 0xC
mov r8, qword [rdx + rax]
xend
_txnL61:
ret

ENDPROC_FRAME

In ring-0, this code successfully retrieves the IA32_GS_BASE that was previously written by ring-3 via wrgsbase. This works even
if executed after a reload of the page-tables (simulating KPTI behavior).

From an exploitation point-of-view, the problem remains how to force the kernel to speculatively execute such a code. When
considering the Linux kernel, previous work by Jann Horn, from Google’s Project Zero, showed [5] that the Linux in-kernel eBPF
JIT/interpreter could be abused to JIT-compile such code and force it to execute in ring-0. We didn’t further investigate how to
force eBPF JIT to generate the above sequence.

The proof of concept(s)

We provided Intel with proof-of-concepts demonstrating the store-to-load forwarding on descriptor loads (point 4) and
demonstrating the ability of speculatively reading stale values from the FS base register (this works for GS as well) (related to
points 1-3 of this white-paper). The proof-of-concepts were conceived for Windows OSes.

Mitigations
Intel performed an assessment of our findings and stated that for the first implication (Retrieving the previously stored GS or
FS base addresses and subverting KASLR/Intel SGX) they agree that it can be used to subvert KASLR and the current Meltdown
mitigations are sufficient to prevent arbitrary kernel memory reads. We agree to their assessment, but we note that on Windows
OSes the KPCR is not protected by KVA Shadow - that’s why we were able to leak pointers into ntoskrnl. Our opinion is that this
is Microsoft’s design decision, and leaking from KPCR is orthogonal to the segment renaming issue.

Regarding the second implication (Leaking general-purpose register contents across privilege boundaries), Intel considers that
existing OS-level mitigations (SMEP, SMAP and RSB Stuffing) are sufficient to prevent arbitrarily leaking general purpose register
values, and we agree with this, so no further mitigations (other than perhaps fixes at the hardware level in new CPU generations)
should be needed.

Finally, regarding the fourth implication (Store-to-Load Forwarding works on descriptor loads), Intel considers it an example of
Bounds Check Bypass Store (detailed in the researcher paper at: https://people.csail.mit.edu/vlk/spectre11.pdf) and, given
that modern OSes don’t use segment limits in order to guard memory secrets, the impact in real software is reduced and they
don’t recommend any further mitigations. We agree to their assessment, but we do recommend that any exotic applications that
do take into account segment limits should be reviewed in-light of these findings.

https://people.csail.mit.edu/vlk/spectre11.pdf

[8]

White Paper

Conclusions
In this whitepaper we analyzed a number of security implications resulting from speculatively executing instructions that are
used for x86 segmentation handling. We have shown how side-effects of the x86 legacy segmentation model can be used to
subvert KASLR on modern, up-to-date operating systems. We demonstrated how to use the speculative writes to segment
descriptor bases as a novel covert channel, which, in the absence of SMEP and RSB Stuffing, could be used to leak arbitrary
register values across different privilege levels.

Responsible Disclosure
All these findings, accompanied by Proof of Concepts (PoCs), were responsibly disclosed to Intel. According to Intel, our initial
PoCs manifested MDS behavior, and Intel had to finish them to reach the conclusion that parts of them were related to MFBDS.
However, the other security findings - related to the speculative execution of segmentation instructions - needed further analysis,
so Bitdefender and Intel agreed, on May 14’th 2019, to postpone the publication of this white-paper until Intel completed their
assessment.

[9]

White Paper

References :
[1] “Retpoline: A Branch Target Injection Mitigation”, Intel® Corporation, available online at https://software.Intel®.com/
security-softwareguidance/insights/deep-dive-retpoline-branch-targetinjection-mitigation

[2] “Spectre Returns! Speculation Attacks using the Return Stack Buffer”, Esmaiel Mohammadian Koruyeh, Khaled Khasawneh,
Chengyu Song and Nael Abu-Ghazaleh, in 12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018

[3] “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-channel Attack”, Yuval Yarom and Katrina Falkner, in
Proceedings of the 23rd USENIX Conference on Security Symposium, SEC’14, 2014 https://blogs.technet.microsoft.com/
srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

[4] “KVA Shadow: Mitigating Meltdown on Windows”, Microsoft Corporation, available online at https://blogs.technet.
microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

[5] ”Reading privileged memory with a side-channel”, Jann Horn, Goole Project Zero, available online at https://
googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

https://software.intel.com/security-softwareguidance/insights/deep-dive-retpoline-branch-targetinjection-mitigation
https://software.intel.com/security-softwareguidance/insights/deep-dive-retpoline-branch-targetinjection-mitigation
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/

[10]

White Paper

Appendix A
Output listing of multiple runs of specsreg.exe on an Intel Core i7-6600U, Windows 10 x64, May 2019 updates :

C:\work\x64\Release>specsreg.exe

TimeAvgAllCached = 29

Will use increased TimeAvgAllCached = 79

TimeAvgAllNon-Cached = 321

Leak using the average lowest time method

Writing the FS base register speculatively with value 0xAAAAAAAA...

Disp = 0 : Success: 0xAA=’?’ score=9913 (second best: 0x00 score=2)

Disp = 8 : Success: 0xAA=’?’ score=9972

Disp = 16 : Success: 0xAA=’?’ score=9952 (second best: 0x00 score=1)

Disp = 24 : Success: 0xAA=’?’ score=9874 (second best: 0x00 score=1)

Disp = 32 : Success: 0x00=’?’ score=5141

Disp = 40 : Success: 0x00=’?’ score=4296

Disp = 48 : Success: 0x00=’?’ score=4456

Disp = 56 : Success: 0x00=’?’ score=5369

Real FS base: 0x0000000000000000

Leaked previously speculatively written FS base value: 0x00000000aaaaaaaa

Leak using the lowest access time method

Real FS base: 0x0000000000000000

Leaked	previously	speculatively	written	FS	base	value:	0x000000ffaaaa00aa

[11]

White Paper

This page is
 le

ft b
lank i

ntentio
nally

Bi
td

ef
en

de
r-W

hi
te

Pa
pe

r-I
N

TE
L-

CR
EA

37
94

-e
n_

ENBitdefender is a global security technology company that delivers solutions in more than 100 countries through a network of
value-added alliances, distributors and reseller partners. Since 2001, Bitdefender has consistently produced award-winning

business and consumer security technology, and is a leading security provider in virtualization and cloud technologies.
Through R&D, alliances and partnership teams, Bitdefender has elevated the highest standards of security excellence in both

its number-one-ranked technology and its strategic alliances with the world’s leading virtualization and cloud technology
providers.

More information is available at http://www.bitdefender.com/.

All Rights Reserved. © 2019 Bitdefender. All trademarks, trade names, and products referenced herein are property of their
respective owners. FOR MORE INFORMATION VISIT: enterprise.bitdefender.com.

http://www.bitdefender.com/

	Abstract
	Security implications
	Mitigations
	Conclusions
	Responsible Disclosure
	References :
	Appendix A

