
White Paper

Bypassing KPTI Using the
Speculative Behavior of the
SWAPGS Instruction

[2]

White Paper

Authors:

 Andrei LUȚAȘ (vlutas@bitdefender.com),
Dan LUȚAȘ (dlutas@bitdefender.com)

Contents
Abstract ___ 3

Disclaimer ___ 3

Introduction ___ 4

The SWAPGS instruction ___ 4

The Exploit __ 6

Challenges___ 9

Mitigations ___ 13

Conclusions __ 14

Glossary __ 15

Timeline of the discovery__ 16

References ___ 18

[3]

White Paper

Abstract
Speculative-execution based attacks and side-channels are more and more common as disclosures continue to increase
scrutiny by researchers in this field. In this whitepaper, we demonstrate a new type of side-channel attack based on speculative
execution of instructions inside the OS kernel. This attack is capable of circumventing all existing protective measures, such as
CPU microcode patches or kernel address space isolation (KVA shadowing/KPTI). We practically demonstrate this by showing
how the speculative execution of the SWAPGS instruction may allow an attacker to leak portions of the kernel memory, by
employing a variant of Spectre V1.

Disclaimer
We assume the reader has knowledge of CPU internals (branch prediction, out-of-order execution, speculative execution,
pipeline, and caches), OS internals (system calls, interrupt and exception handling and KPTI), and side-channels and speculative-
execution attacks in-general. It is best to read about Meltdown, Spectre, L1TF and MDS before approaching this whitepaper. That
material provides fundamental building blocks about such attacks that are used in this whitepaper, but not described in detail.
Rather, in this whitepaper we focus on only how the newly discovered attack works.

[4]

White Paper

Introduction
While side-channel attacks have been well-known for some time, speculative-execution based attacks are new, and signs indicate
they will persist for some time. Some of the most famous ones to date are Meltdown [1], Spectre [2], L1TF [3] and MDS [4] [5]
[6]. These vulnerabilities allow an attacker to break the basic memory isolation provided by the hardware to access data which
would normally not be accessible. At the most fundamental level, these vulnerabilities rely on a feature common in modern
CPUs called speculative execution. This feature allows the CPU to execute instructions before knowing whether their execution
is required. For example, branch prediction can lead to speculative execution. Each time the CPU encounters a conditional
branch (an instruction which redirects the execution to another address if a certain condition is met), the CPU has to decide
whether that branch should be taken or not very early in the front-end of the CPU, before actually executing the branch (in order
to know where to start fetching the next instruction). To enhance performance, the CPU attempts to predict the outcome of the
branch, and it starts executing instructions from the address indicated by the branch condition. However, later on, during the
actual execution of the branch instruction, the CPU determines if the predicted outcome is correct or not. If it is, the instructions
fetched and executed speculatively are committed normally, as they fall within the normal execution path. However, if the CPU
determines that it mispredicted the branch, it discards all the instructions that were fetched and executed until that point, and
it resteers the front-end to the correct address. This is not normally an issue as the discarded instruction don’t produce any
architecturally visible results (register or memory modifications) until the CPU determines they are needed. However, they do
produce microarchitectural changes which can be observed by an attacker – in particular, they can leave cache traces. These
cache traces are enough to leak secrets from arbitrary security boundaries (for example, from one process to another, from
the kernel memory to the user memory, from SGX enclaves or from VMX root to VMX non-root), forming the basic block of
speculative execution attacks.

Mitigations for this class of vulnerabilities are tricky to implement, and they generally fall in 3 categories:

1. Hardware fixes, which are available only in newer CPUs which address the flaws directly in silicon;

2. Software mitigations, which are implementations made entirely in software; the best example here is Kernel Page Table
Isolation (KPTI) [7], which isolates the kernel memory into a different virtual address space, thus rendering several
speculative side-channel attacks, such as Meltdown, ineffective;

3. Microcode mitigations, which require hardware and software cooperation: the hardware vendor supplies a microcode
patch to expose some new functionalities (for example, the Spectre v2, L1TF or MDS mitigations) which are then used
by hypervisor or operating system vendors to mitigate the vulnerabilities.

Currently, all the side-channels noted above are mitigated by at least one of the three listed categories. However, in this whitepaper
we present a novel side-channel attack which bypasses all known mitigations by abusing a poorly-documented behavior of a
system instruction called SWAPGS. The newly discovered side-channel allows an attacker to leak some portions of the kernel
memory space, which would normally be protected by KPTI.

The SWAPGS instruction
SWAPGS is a system instruction (which means it can be executed only in kernel mode), available in 64-bit mode, and is intended
to be used by only the operating system to switch between two Model Specific Registers (MSRs): the IA32_GS_BASE (for
simplicity, it will sometimes be referred to as GS base) and the IA32_KERNEL_GS_BASE. The Intel Software Developer Manual
[8] describes the behavior of this instruction in detail (Volume 2: Instruction Set Reference, A-Z, CHAPTER 4 INSTRUCTION SET
REFERENCE, M-U). This allows the kernel to quickly gain access to internal, per-CPU data structures, as soon as a transition is
made from user-mode to kernel mode. The normal usage scenario is that during a user-mode process execution, IA32_GS_BASE
points to the user-mode per-CPU data structure - the Thread Information Block (TIB) on Windows - while the IA32_KERNEL_GS_
BASE points to the kernel per-CPU data structure, the Kernel Processor Control Region (KPCR). When an event which switches
from user-mode to kernel-mode occurs (for example, a SYSCALL, an interrupt, or an exception), one of the first things the kernel
does is execute the SWAPGS instruction to switch the two MSRs; make IA32_GS_BASE point to the kernel per-CPU data, and
IA32_KERNEL_GS_BASE to point to the user-mode per-CPU data. When the GS segment register is used to access memory,
the CPU automatically uses the value in IA32_GS_BASE as the base address. IA32_KERNEL_GS_BASE is never used directly
in addressing, and can only be accessed via the RDMSR, WRMSR or SWAPGS instructions. In contrast, the current value in
IA32_GS_BASE can also be modified from user-space by using the WRGSBASE instruction.

[5]

White Paper

The SWAPGS instruction is used mainly at the entry point of a SYSCALL or interrupt handler. The following example is the
SYSCALL handler on a 64 bit Windows:

nt!KiSystemCall64Shadow:

0f01f8 swapgs

654889242510700000 mov qword ptr gs:[7010h],rsp

65488b242500700000 mov rsp,qword ptr gs:[7000h]

650fba24251870000001 bt dword ptr gs:[7018h],1

7203 jb nt!KiSystemCall64Shadow+0x24

0f22dc mov cr3,rsp

fault_from_kernel: ...

As one can see, in this case SWAPGS is the first instruction executed after the user-kernel transition. This is important since
immediately after, the user-mode stack pointer RSP is saved in the structure pointed by the freshly loaded GS. Next, a check is
made to see if KPTI is enabled for this particular process. If it is, the kernel-mode CR3 will be loaded (it was previously loaded
into RSP from the KPCR).

In contrast, here is the code which handles a page-fault exception:

nt!KiPageFaultShadow:

f644241001 test byte ptr [rsp+10h],1

7462 je fault_from_kernel

0f01f8 swapgs

650fba24251870000001 bt dword ptr gs:[7018h],1

720c jb nt!KiPageFaultShadow+0x22

65488b242500700000 mov rsp,qword ptr gs:[7000h]

0f22dc mov cr3,rsp

fault_from_kernel: ...

This code is slightly different. It first checks to see if the exception originated in kernel-mode (the first TEST instruction), and if
it didn’t, it executes SWAPGS to load the KPCR address into the GS base register (since this means the exception originated in
user-mode, and therefore, the GS base would point to the user-mode TIB). The rest of the code is similar to the SYSCALL handler.

Another interesting gadget is the following:

f60596a1390001 test byte ptr [nt!KiKvaShadow],1

7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov r10,qword ptr gs:[188h]

65488b0c2588010000 mov rcx,qword ptr gs:[188h]

488b8920020000 mov rcx,qword ptr [rcx+220h]

488b8930080000 mov rcx,qword ptr [rcx+830h]

6548890c2570020000 mov qword ptr gs:[270h],rcx

This code sequence is present in all exception handlers. Its role is unclear since a breakpoint established on this SWAPGS
instruction revealed that it is never hit (from neither KPTI-enabled processes, nor processes with KPTI disabled), and therefore,
this instruction probably very rarely executes.

[6]

White Paper

The Exploit
Since SWAPGS can be executed speculatively inside user-mode, an attacker can leak the address of the per-CPU data, normally
available to only the kernel. This is a variant of Rogue System Register Load, and seems to work on only Intel CPUs. While this
by itself may not mean too much, it allows an attacker to mount a KASLR bypass attack, thus subverting one of the most basic
anti-exploit measures employed in the kernel. This is very intuitive, and is not the subject of this white-paper. Instead, we focus
on leaking kernel memory.

There are 2 main scenarios that we have identified; SWAPGS not getting executed speculatively when it should, and SWAPGS
getting speculatively executed when it should not. We discuss both scenarios in the following sections. However, the second
scenario is much more serious, and our exploit (and the rest of the whitepaper) is based on it.

Scenario 1: SWAPGS not getting speculatively
executed when it should
In this scenario a mispredicted branch redirects execution to a GS based addressing but without executing the SWAPGS
instruction, although it should have, immediately after a user-to-kernel transition. Let’s consider again the following example:

nt!KiPageFaultShadow:

[1] f644241001 test byte ptr [rsp+10h],1

[2] 7462 je fault_from_kernel

[3] 0f01f8 swapgs

[4] 650fba24251870000001 bt dword ptr gs:[7018h],1

[5] 720c jb nt!KiPageFaultShadow+0x22

[6] 65488b242500700000 mov rsp,qword ptr gs:[7000h]

[7] 0f22dc mov cr3,rsp

This code sequence is executed when a Page-Fault (#PF) takes place. First it tests the CS register saved on the stack to see if the
#PF originated in kernel. If it did originate in kernel, it jumps over the SWAPGS instruction, as the IA32_GS_BASE already points
to the KPCR (since we were already in kernel when the #PF took place, it is assumed SWAPGS had already executed). However,
when the #PF originates in user-mode, SWAPGS has to be executed to make IA32_GS_BASE point to the KPCR. If the branch
is mispredicted, execution continues in kernel with the user-mode IA32_GS_BASE active instead, thus opening another door for
exploitation. An analysis of the Windows kernel shows that this does not seem to be a problem in practice since immediately
after the user-to-kernel transition, the user CR3 is still active, and to gain access to the entire kernel memory space, the kernel
CR3 must be loaded. As one can see in the above code sequence, the kernel CR3 is loaded only after the SWAPGS instructions,
and it is a serializing instruction, meaning that it cannot execute speculatively (all the instructions before instruction 7 must be
retired before executing it).

Scenario 2: SWAPGS getting speculatively executed
when it shouldn’t
More interesting things happen when the SWAPGS instruction is executed speculatively inside the kernel. This is particularly
problematic if it is followed by GS based addressing, which speculatively accesses the user-mode GS instead of the kernel one

[7]

White Paper

(since SWAPGS speculatively switched IA32_GS_BASE with IA32_KERNEL_GS_BASE). We disassembled the Windows kernel
to see what instructions usually follow the SWAPGS instruction, and were surprised. Let’s consider again one of our previous
examples, which is the base of our exploit, and will be referred to from now on as the gadget (note that each instruction is labeled,
for easier explanations):

[1] f60596a1390001 test byte ptr [nt!KiKvaShadow],1

[2] 7503 jne skip_swapgs [4]

[3] 0f01f8 swapgs

[4] 654c8b142588010000 mov r10,qword ptr gs:[188h]

[5] 65488b0c2588010000 mov rcx,qword ptr gs:[188h]

[6] 488b8920020000 mov rcx,qword ptr [rcx+220h]

[7] 488b8930080000 mov rcx,qword ptr [rcx+830h]

[8] 6548890c2570020000 mov qword ptr gs:[270h],rcx

As one can see, the SWAPGS instruction 3 is followed by multiple GS based addressing instructions. In addition, the SWAPGS
instruction is preceded by a conditional jump 2, which may sometimes be mispredicted. This means that sometimes, the GS
based instructions access user-mode memory, because they are executing speculatively after SWAPGS. If an attacker modifies
in user-mode IA32_GS_BASE, the speculative region would basically access whatever address the attacker wrote in that register
(for example, using the WRGSBASE instruction). For example, if an attacker writes the value 0x1000 in IA32_GS_BASE, the CPU
will speculatively access address 0x1000+0x188=0x1188 twice. The most interesting part is that the value loaded from the
attacker-controlled address is further dereferenced. In our example, whatever value is loaded from address 0x1188, it will further
be dereferenced by instruction 6, mov rcx,qword [rcx+220h]. If, for example, at address 0x1188 lies the value 0xCC000, this MOV
instruction will attempt to load a QWORD from address 0xCC000+0x220=0xCC220. Furthermore, whatever value lies at address
0xCC220 will be dereferenced again by the next instruction 7, mov rcx,qword [rcx+830h]. The result is a triple attacker-controlled
dereference. How can we use this to our advantage? We will see this in Variant 2. Leak arbitrary kernel addresses.

Variant 1. Test if a certain value is located at a given
kernel address
The first method of abusing the speculative behavior of the SWAPGS instruction relies on the fact that the CPU speculatively
does at least 2 memory accesses. These 2 accesses are sufficient to allow an attacker to test if a value is located at a selected
address inside the kernel. This can be considered a search primitive, as it allows the attacker to search for certain values in kernel
memory. However, not any random value can be searched, as we will soon see. Let’s consider again the exploit gadget listed
previously. If SWAPGS is executed speculatively, and the GS base ends up pointing to an attacker-controlled value - let’s call it
K - then instructions 4 & 5 will load a QWORD from address K+0x188 – let’s call the loaded qword Q. Furthermore, instruction 6
will load a QWORD from the address Q+0x220. The main question is, what happens if the attacker previously allocated memory
at address Q+0x220? The answer is pretty straightforward; if the attacker already mapped that address, then the CPU, in its
attempt to access it, leaves a signal inside the data caches, as the contents of address Q+0x200 would be cached. Now that the
basic pieces of the puzzle are all present, we can construct the search primitive. Assuming the attacker wants to see if value V
is located at kernel address K, he would do the following:

1. Allocate memory at address V-0x220

2. Write the kernel address K-0x188 into the IA32_GS_BASE register, using, for example, WRGSBASE

3. Wait for an interrupt or generate a fault, which would transition from user to kernel

4. If branch 2 is mispredicted:

a. SWAPGS will be speculatively executed

b. Value Q will be loaded from address (K-0x188)+0x188

c. Q+0x220 will further be dereferenced

5. When control is passed back from kernel to user, the attacker would check to see if address V is cached. If it is indeed
cached, this confirms that value V (with a cache line bias – the actual value will be between V aligned to a cache line,

[8]

White Paper

which is usually 64 bytes, and V aligned to the next cache line) is located at kernel address K. Otherwise, this could
mean that either the value V is not present at kernel address K, or that simply the branch was not mispredicted, and
speculative execution of the SWAPGS instruction was not triggered. For better accuracy, each address would be tested
several times, until either a match is found, or there is a certain probability that the value is not there.

Variant 2. Leak arbitrary kernel addresses
The second variant of the SWAPGS vulnerability is more generic, in that it allows the attacker to infer the value located at a
randomly selected kernel address. However, the restriction from the previous section still applies (i.e., values that don’t fall within
the addressable user-mode domain are not easily leakable). It is more challenging to leak arbitrary addresses since we don’t
know what addresses to map in user-mode in order to detect speculative kernel accesses. The naïve approach in this case is to
employ a linear search algorithm, where obtaining the value at kernel address K would go something like this:

1. Spray the entire user-mode virtual-address space

2. Write the target kernel address K-0x188 into the GS base register

3. Trigger or wait for a kernel transition

4. If the gadget gets executed speculatively, and the value V located at address K falls within the addressable user-mode
domain, a cache signal will be left, as address V will be cached

5. When returning to user-mode, check which address V has been cached

Of course, this technique is only theoretical as it is impossible to fill the entire user-mode space with memory; the attacker would
have to allocate 247=128TB of memory. Needless to say, this is not feasible in practice. A more realistic approach is to allocate
large chunks of memory and iterate through the entire address space. Realistically, there are high chances that if the allocated
chunks of memory exceed the size of the Last Level Cache (LLC), in an attempt to see which address within the chunk has been
accessed speculatively, the signal would disappear, as it would be evicted from the cache by the repeated tests. However, using
chunks of memory roughly equal to the LLC is good enough, as this is usually more than 4MB in size, going up to 32MB in high-
end systems. This means that the entire user-mode address space can be checked in 247B/32MB=4M iterations, which starts to
be feasible.

There, are however, even better approaches. Let’s take a look at the gadget once again. Instruction 5 loads value Q from the
kernel address K. Instruction 6 then dereferences Q+220h and loads a new value, P, which is further dereferenced by instruction
7 which loads the value located at P+830h. This gives us a great opportunity; instead of allocating, for example, a 32MB chunk
of memory and iterating through all of it to see if any address within this chunk was cached, we could spray the entire 32MB
chunk of memory with the address of a single test variable. If the gadget gets to execute speculatively, and if the value V at
kernel address K is within that 32MB memory region, then instruction 7 would speculatively access our test variable. Instead of
iterating the entire 32MB memory region to see if any address is cached, we can directly test our variable; if it is cached, then the
value V is within the tested range. Otherwise, we can move on with the search. This method significantly speeds up the process.
The final algorithm may look something like this:

1. Allocate a chunk of memory, M, with size S (where S will usually be selected depending on the LLC size)

2. Fill chunk M with the address of our test variable, T-0x830 (note that we don’t know beforehand the offset where we
should spray T, as it can between 0 and 7; this can be overcome by trying each possible offset)

3. Flush the variable T from the cache, using the CLFLUSH instruction

4. Write the kernel address K-0x188 to be leaked in GS base register using WRGSBASE

5. Trigger the gadget to be executed speculatively

6. Inside the kernel space, if the gadget indeed executes speculatively:

a. Instruction 3 (SWAPGS) makes the attacker controlled GS base active (which points to the target kernel
address K)

b. Instruction 5 loads value Q from address K

c. Instruction 6 loads value P from address Q+0x220

d. Instruction 7 loads value R from address P+0x830

e. If Q is in the range of the allocated chunk M, then P will be equal to our test variable T, which will be dereferenced

[9]

White Paper

to load R; therefore, T will be cached if the gadget is executed speculatively and if the value at kernel address
K is in the interval described by memory chunk M

7. When returning to user-mode, the attacker will test to see if variable T is cached

a. If variable T is cached, then the value located in kernel at address K is in the interval described by memory
chunk M (for example, if M was allocated at address 0 and has a size of 32MB, then the value at kernel address
K is in the range [0, 33554432]), and the attacker may further zoom into that region by reducing the size S to
be allocated (for example, S may be cut in half at each step)

b. If variable T is not cached after a certain number of tries, the next interval can be checked: M=M+S and goto
step 1

By employing this technique, the attacker can sequentially reduce the search interval until it reduces the number of possible
values to an acceptable range.

Challenges

Speculatively executing the gadget
From this perspective, the exploit can be thought of as a new variant of Spectre v1, since it relies on speculatively executing
unexpected instructions after a branch was mispredicted. Directly controlling the outcome of a conditional branch which is
located in kernel is impossible, but we determined that we can control it, to some extent. The conditional branch in the vulnerable
gadget is executed after testing whether the KvaShadow kernel variable has bit 0 set. If bit 0 inside KvaShadow is set, the jump
will be taken, and the SWAPGS instruction is skipped, and therefore, not executed. To have a high probability of success, we must
be able to indirectly manipulate the outcome of this branch, and fool the CPU into thinking the branch is not taken, and therefore,
to speculatively execute the SWAPGS instruction. To do so, good knowledge about the organization of the branch prediction
unit is required. Agner Fog has an excellent resource [9] which describes in detail how various CPU units work. Unfortunately,
it appears that little is known about how branch predictors are organized and how they work on Intel Haswell and newer CPUs.
To save time, we decided for to use a brute-force approach instead of carefully reverse-engineering these aspects. The building
blocks required to influence the speculative execution of our gadget in kernel are:

Trick the CPU into thinking the branch instruction 2
is not taken: branch confusion
As already mentioned, there’s no way to directly do so, and there is little information regarding the organization of branch
predictors on Intel Haswell CPUs and newer [10]. We therefore made the assumption that regardless of how it’s organized
internally, the CPU must somehow use the branch instruction address in order to look it up inside the Branch Target Buffer (BTB).
We expect that on Haswell and newer, the BTB is organized as any other cache, having various sets and ways (and indeed [10]
hints at a 4-way set associative organization for Haswell, perhaps it is similar on recent CPUs as well) – this is better illustrated in
Figure 1. Therefore, some bits of the branch address are used to index a particular set inside the cache (usually lower order bits),
and other bits inside the branch address (usually higher order bits) are used as a tag (perhaps after applying a hash function on
various portions of the address). Little to no information is known about actual BTB access, but we expect to be able to evict
the target branch from the vulnerable gadget by allocating a long sequence of conditional branches which are situated at the
same page offset as the target branch. For example, if the target branch is located at offset 0xCEE inside the memory page, we
would allocate a large memory area (for example, several KB or MB in size), and inside each page of this buffer, at offset 0xCEE,
we place an identical conditional branch, but which is never taken. This has two effects. First, the actual target branch will most
likely be evicted from the BTB, and second, if there is a collision between the tag bits inside the BTB, we would directly cause the
branch to not be taken. In reality, all we care about is evicting the branch from the BTB, because the CPU would normally employ
static prediction on branches it sees for the first time. A very good write-up [10] hints that Intel Haswell CPUs always predict
newly seen branches as not-taken, which is exactly what we need. Intel Ivy-Bridge seems to weakly predict ahead as not taken,
which is again what we want. The Intel Optimization manual [11] states in Chapter 3, Section 4, subsection 1, paragraph 3, that
the static predictor would predict backward taken, forward not taken, which confirms the described findings, and is favorable for
our exploit.

[10]

White Paper

Make sure the KvaShadow variable is not cached:
cache thrashing
This is easier to do in practice, but other CPU cores executing in parallel may interfere by caching it back whenever it’s accessed.
To make sure this variable is not cached, we employ a technique very similar to the one described in the previous section, but
instead of flushing the BTB, the data caches are flushed. In doing so, we simply determine the page offset of the KvaShadow
variable, and allocate a large chunk of memory (at least the last-level cache in size), and thereby access that offset in each of our
memory chunk’s pages. This ensures, with sufficient probability, that the variable is evicted from the caches, and the conditional
branch is not only mispredicted, but it will have to wait until the variable is read from memory (which should take several hundred
clock cycles). This gives us enough speculative execution time to employ the attack. The typical cache access mechanism is
illustrated in Figure 1.

Figure 1. Typical cache access scheme

Test variable alignment
When we spray the decoy memory buffer with the address of the test variable (which, if cached, indicates that the kernel value
lies within the tested memory interval), we don’t know the actual alignment of the kernel value Q located at K. For example, if
we spray address of the test variable T starting with offset 0 (M + 0x310, M + 0x318, M + 0x320, M + 0x328, etc.) inside the
memory chunk M; but if the value Q at kernel address K is aligned to 3, for example 0x103, the exploit will fail, as instruction 6
loads a value aligned to 3 (from M + 0x323, which does not contain the address of T). To overcome this, we can try each possible
alignment since there are only 8 possible values (a QWORD is loaded from memory, which is 8 bytes in size). Modern CPUs
have more than 2 cores, regularly 4 and even more than 8. The attack can be parallelized to run on each core, with a different
alignment. Figure 2 shows how a misaligned load would not produce the desired effect of accessing the test variable, and
instead it would access another address.

[11]

White Paper

Figure 2. A misaligned load would access other locations, instead of the test variable

Cache Line Bias
Caches work with the granularity of a line, which is usually 64 bytes on modern CPUs. This means that if an address is cached,
the entire 64 bytes region surrounding that address is cached. For example, if we wish to leak from a kernel address K which
contains the value 0x123, the region that is cached is [0x100, 0x13F]; therefore, we know that the value located at that address
is in that interval, but we wouldn’t know the exact value of the low order 6 bits. To identify the value of these low order bits, we
can try to leak the value from kernel address K-1 – this will translate into the value 0x123??, where the question marks represent
whatever byte value is located at address K-1. We call this technique address shifting, since we can shift 1 byte at a time from
the kernel value which we dereference. The concept of cache line bias is illustrated in Figure 3.

Figure 3. Cache line bias when inferring the kernel memory value

Leakable domain
The main disadvantage of this technique is that it cannot leak any arbitrary value; it can only leak values which resemble valid
user-mode addresses. Due to the restrictions of 64-bit addressing, which uses 48-bit linear addresses, an address is considered
to be a valid user mode address if it’s in the range [0x0000000000000000, 0x00007FFFFFFFFFFF]. Intel announced recently
that it wishes to extend the size of linear addresses from 48-bit to 57-bit, the LA57 technology [12], which will extend this domain
to [0x0000000000000000, 0x007FFFFFFFFFFFFF]. A quick statistic on a Windows RS5 ntoskrnl.exe memory image revealed
that 33.7% of its contents can be leaked (approximatively 3.3MB out of 10MB). If we consider 57-bit addressing, about 51.2%
of the contents can be leaked (approximatively 5.1MB out of 10MB). We’ve also tested a random 10MB area of the non-paged
pool, and we concluded that with 48-bit addressing, 55.9% of the contents can be leaked, whereas with 57-bit addressing 65.8%
of the contents can be leaked.

[12]

White Paper

Leaking other values
Although we didn’t take the time to investigate further, we believe that any value which resembles a valid, canonical address may
be leakable (although this should be more challenging). The rationale behind this is an article [13] which demonstrates how the
ASLR can be bypassed by observing which cache sets are evicted by the Page Miss Handler (PMH) when performing a page-
walk. In essence, the problem presented in this article – obtaining the value of an unknown virtual-address which is accessed
by the attacker, is very similar to the problem we have; obtaining the value of random data accessed speculatively, and then
dereferenced. This may be more problematic in practice, however, as in our case, there will be lots of noise, due to the necessity
of transitioning in kernel each time to do an access of the secret value. We do believe that with enough time and resources, this
method may be feasible in practice, and would allow an attacker to leak any canonical value. Given 48-bit linear addresses, this
would increase the domain of leakable values to 37.7%, and given 57-bit linear addresses, this would allow for 64.8% of the nt
image memory contents to be leaked. In practice, these two techniques may be combined. For the 10MB random non-paged
pool area, this would allow for 65.0% of the contents to be leaked with 48-bit addressing and 74.6% with 57-bit addressing.

Performance
The performance of the attack varies greatly. Performance depends on how often the branch before the SWAPGS instruction is
mispredicted, and the affected CPUs cache size. If an attacker is careful and patient enough, this may not be such a problem.
However, in practice, we expect the variant 2 of the attack to be rather slow, with a speed not faster than a few bytes every few
minutes, since it must search the value in a large space. Variant 1, however, is much faster. Confirmation for the presence of
a given value at a tested kernel address takes place in well under 1 second. Since our goal was not to create a fully-functional
exploit, but rather a PoC which proves the feasibility of leaking kernel values, we find the current performance acceptable. We
anticipate that the leaking rate can be greatly improved by better controlling the mistraining of the branch prediction unit.

We measured the actual performance for Variant 1 (searching for a kernel value), with the following test:

Knowing that the first QWORD value inside the nt kernel image is 0x0000000300905A4D, and knowing the base address of the nt
image, we measured, on average, how much time and how many tries are required for the speculative gadget to be triggered and
leave a measurable cache signal inside user-space. We mapped address 0x0000000300905A4D+0x220 in user mode, we wrote
the kernel base in IA32_GS_BASE register using the WRGSBASE instruction, and we triggered a kernel transition by generating
an Undefined-Opcode Exception (#UD) using the UD2 instruction. Our measurement indicates that - on average - it takes about
0.0001 seconds, or about 2 tries, for the gadget to be triggered and leave the cache signal which confirms that a value within
the interval [0x0000000300905A40, 0x0000000300905A80] is located at the tested kernel address. Of course, to maximize our
chances of triggering speculative execution of the gadget, we employed the branch confusion and cache thrashing techniques
previously described. The test was conducted on a Windows 10 RS5 x64, powered by Intel Core i7-8650U with 8 logical cores.

Other operating systems and CPUs
The focus of our research was Microsoft Windows, as it was a low hanging fruit in terms of demonstrating the exploit. A quick
analysis of the Linux kernel revealed that although it contains a gadget which may be used in an attack, it lies inside the Non-
Maskable Interrupt (NMI) handler. We therefore believe that Linux would be difficult (if not impossible) to attack. A quick analysis
of the Hyper-V kernel and of the Xen hypervisor kernel revealed that the SWAPGS instruction is not used, so exploitation is
impossible. Other operating systems and hypervisors have not been investigated, although Microsoft, during the coordination of
the disclosure, notified all the interested partied about this vulnerability.

In addition, our PoC relies on the WRGSBASE instruction to modify the GS base in user-mode. This instruction is present starting
with Ivy Bridge, and we expect that older CPUs to be much more difficult, if not impossible to exploit.

We tested two AMD CPUs: AMD64 Family 16 Model 2 Stepping 3 AuthenticAMD ~3211 Mhz and AMD64 Family 15 Model 6
Stepping 1 AuthenticAMD ~2100 Mhz and neither exhibited speculative behavior for the SWAPGS instruction.

Since the SWAPGS instruction is present only on x86-64, we don’t expect other CPU architectures, such as ARM, MIPS, POWER,
SPARC or RISC-V to be vulnerable. However, we don’t exclude the existence of other similarly sensitive instructions that may
execute speculatively.

[13]

White Paper

Mitigations
The bad news is current mitigations such as microcode patches or KPTI do not address this newly discovered technique. The
good news is there are several options for mitigating this vulnerability.

Clobber the user-mode GS on user-kernel transitions
One way to mitigate this vulnerability is by ensuring the user-mode GS base contains a known value, and not something
controlled by the attacker. This must be done very soon after the transition, preferably before any conditional branches take place
(which may allow exploitation still). However, this technique requires considerable work on the kernel side from all OS vendors.
Considering there are simpler ways to mitigate this issue, it will probably never be leveraged as a fix.

Supervisory Mode Access Prevention
Supervisory Mode Access Prevention (SMAP) is a technology which prohibits user-mode pages from being accessed while in
kernel mode. As the attack relies on speculatively accessing user-mode memory from kernel space to infer sensitive value,
SMAP is more than capable of mitigating this issue. SMAP is already used by Linux kernels on CPUs which provide support. On
Windows, SMAP requires significant engineering, since the driver model allows user-mode memory access by default.

Serialize the execution of the SWAPGS instruction
The most straight-forward way of mitigating this remains the serialization of the SWAPGS instruction. This can be done by
placing an instruction such as LFENCE before or after each sensitive SWAPGS instructions. Normally, the modification itself is
trivial, and the performance impact should likewise be minimal, as only the rarely taken branch is affected. However, care must be
taken since this only covers scenario 2, where SWAPGS is executed speculatively when it should not. To also cover scenario 1, a
serializing instruction must be placed at the beginning of each block of code executed as a result of a branch skipping SWAPGS.
This ensures that code is not executed speculatively without having executed SWAPGS beforehand, if it was required.

Hardware fixes
Of course, the most complete solution to this problem is to fix the CPU. Releasing a patch for the CPU is not as simple as
releasing one for software. This will probably not happen very soon – perhaps future CPUs will be designed with avoiding this
flaw in-mind such-that they disallow speculative execution of the SWAPGS instruction. Microcode updates are excluded as well,
as Intel clearly stated when we initially reported the vulnerability that they do not wish to address this problem in affected CPUs.

Hypervisor based mitigations
Hypervisor Memory Introspection (HVI) is a technology that leverages CPU virtualization (Intel VT-x, for example) to provide
new levels of protection. HVI analyses the memory of the guest virtual-machine (VM), identifies objects of interest, and uses
technologies such as the Extended Page Table (EPT) to protect said objects against unauthorized access.

With Hypervisor Introspection technology we were able to mitigate this vulnerability before the patches were released by the
impacted vendors. We achieved this by instrumenting each vulnerable SWAPGS instruction and making sure it won’t execute
speculatively, thus preventing kernel memory leaks. This technique works on vulnerable, non-patched kernels by analyzing
the entire memory space, identifying vulnerable gadgets, and modifying them to be non-exploitable by serializing them. The
performance impact for mitigated kernels is negligible. Bitdefender Hypervisor Introspection technology currently supports the
Napoca Hypervisor (a Bitdefender hypervisor), the well-known open source Xen hypervisor and the well-known KVM hypervisor.
Bitdefender continues to work with Intel on an open-source hypervisor project, known as Virtualization Based Hardening (VBH),

[14]

White Paper

which will further extend the reach of Hypervisor Introspection, with a focus on nested environments. More information about the
Bitdefender Hypervisor Introspection technology can be found at https://www.bitdefender.com/business/enterprise-products/
hypervisor-introspection.html.

Conclusions
Speculative-execution based attacks are the new standard when it comes to cutting edge exploits and attacks. Fortunately,
there aren’t any widely known examples of these types of vulnerabilities being exploited in the wild. Perhaps this is because the
community is highly mobilized to find and report these issues to vendors as soon as possible, or it’s simply because they were
not discovered yet. Overall, having this new category of attacks in the spotlight is beneficial, from a security standpoint, as many
researchers focus on discovering new ways of abusing poorly understood behaviors or structures present in the CPU.

In this whitepaper, we presented a novel approach (a technique very similar to Spectre V1) of leaking sensitive information from
the kernel. By abusing the fact that the SWAPGS instruction can be executed speculatively, one can force arbitrary memory
dereferences in kernel, which leaves traces within the data caches. These signals can be picked up by the attacker to infer the
value located at the given kernel address.

We have identified three main use cases for this technique:

1. Obtain the value of the IA32_KERNEL_GS_BASE from user-mode, and thus bypass KASLR

2. Search values in kernel memory – check if a given value is located at a given kernel address

3. Leak arbitrary memory – by employing a divide et impera technique, an attacker may be able to leak values from
arbitrary kernel addresses

The advantage of this newly described technique is that it bypasses every known mitigation to date. The disadvantages are that
it can leak only values which resemble valid user-mode addresses, and in the second use-case, it can be slow. However, since the
introduction of LA57 by Intel, the domain of leakable values increased from 47 bit to 56 bit. In addition, there have been attacks
demonstrated which are capable of leaking portions of a virtual address by observing which sets have been evicted by the page-
walker when translating a linear address. Luckily, mitigations for this new technique can be implemented entirely in software, and
they don’t require microcode patches. Serializing SWAPGS execution mitigates this type of attacks. Furthermore, we used our
Hypervisor Introspection solution to mitigate this vulnerability before patches were publicly available for it.

https://www.bitdefender.com/business/enterprise-products/hypervisor-introspection.html
https://www.bitdefender.com/business/enterprise-products/hypervisor-introspection.html

[15]

White Paper

Glossary
 ● pipeline – technique used by modern CPUs, which involves splitting instruction execution into different stages (fetch,

decode, rename, execute, write-back, etc.); modern CPUs have anywhere from 4 to 20 or 30 pipeline stages

 ● out of order execution – technique used by modern CPUs which allows them to execute instructions whenever the input
data is available, rather than executing them in program order

 ● speculative execution – ability to execute instruction before knowing whether they are required or not

 ● branch prediction – technique used by modern CPUs in order to guess the outcome & destination of branches, so that
instruction execution can continue before knowing whether the branch is actually taken or not

 ● cache – small & fast memory, placed very close to the CPU core, which contains data that was recently accessed
(temporal locality) or data that is around recently accessed data (spatial locality); various types of caches may exist
(data cache, instruction cache, micro-op cache) and levels (level 1, 2, 3, etc. – the higher the level, the bigger the cache
capacity is and the slower the access time is)

 ● instruction retirement – when the CPU knows for sure the results of an instruction are valid (no fault was generated)
and the instruction is not speculative, it will retire it, which means the results are written into the logical registers/
caches/memory. Instruction retirement takes place in program order, which means the instructions appear to execute
in the order in which they were written

[16]

White Paper

Timeline of the discovery
07 August 2018 – Notified Intel that the SWAPGS instruction can be executed speculatively in user-mode, which allows an
attacker to leak the address of sensitive kernel-mode structures, such as KPCR on Microsoft Windows

29 August 2018 – Intel responded that the behavior of the SWAPGS instruction is known, and that they do not intend to address
it in affected CPUs

21 September 2018 – Insisting that this behavior is problematic, and it should be addressed

29 March 2019 – Reported to Intel that the speculative behavior of the SWAPGS instruction, if triggered in kernel mode, allows
an attacker to bypass KPTI and thus leak kernel memory

01 April 2019 – Intel responded and said they’ve started investigating

02 April 2019 – Intel confirmed the issue but worked with ecosystem partners to mitigate at the OS kernel level. They connected
us with Microsoft who agreed to coordinate with others in the industry to address the issue at the software level.

03 April 2019 – Reported to Intel that the Linux kernel contains vulnerable gadgets as well, though a PoC was not developed,
and the complexity of an exploit is unknown

03 April 2019 – Intel responded that they will investigate, and that we should let them approach Linux kernel dev community

10 April 2019 – Got into contact with Microsoft, and was asked for more technical details

16 April 2019 – Provided Microsoft the requested technical details

17 April 2019 – Microsoft responded that they were investigating

18 April 2019 – Microsoft responded that they believe the gadget cannot be used to leak arbitrary memory

22 April 2019 – Provided Microsoft a new PoC, which demonstrated the ability of leaking arbitrary memory

23 April 2019 – Microsoft responded that they were investigating

30 April 2019 – We ask Microsoft if they have any updates

01 May 2019 – Microsoft responded that they have finished reviewing the report, and that they are waiting for OS team feedback,
and are discussing with Intel regarding coordination

07 May 2019 – Microsoft confirms that they reproduced the report and they are targeting a July patch, but this is subject to
change, depending on how coordination goes

15 May 2019 – Microsoft responded they are wrapping up the Microarchitectural Data Sampling issue from Intel, and that they
will provide updates soon

24 May 2019 – Microsoft said they made good progress with the investigation, and that they are targeting mid-summer/late
summer for the fix; also, they are talking with Intel regarding industry coordination

24 May 2019 – Notified Microsoft that we intend to present our findings at BlackHat

06 June 2019 – Microsoft responds they made good progress and are beginning the coordination with the interested industry
vendors; they ask how much advance notice we need for BlackHat

06 June 2019 – We specify that we do not wish to present a 0-day, and we wish for all affected vendors to have time to address
the issue before publishing anything

11 June 2019 – Microsoft asks if they can approach Linux and if we have a PoC for Linux

12 June 2019 – We respond we are okay with approaching Linux, and that we will see if a Linux PoC is doable

13 June 2019 – We notify that a Linux PoC is much more difficult to implement than a Windows one, and they should approach
them without a PoC

18 June 2019 – Microsoft confirms they will approach Linux without a PoC

19 June 2019 – Microsoft asks for our explicit permission to reach Linux Kernel Devs and other vendors

19 June 2019 – We explicitly offer our permission

19 June 2019 – Microsoft asks if we agree with a general summary of the issue

19 June 2019 – We agree with the general summary

[17]

White Paper

25 June 2019 – We ask for updates, specifically: if they notified the community, if they notified AMD, if they assigned a CVE
number, and if they have a release date for the patches

28 June 2019 – We receive the update, stating that Linux is still working on mitigations, AMD was involved, there is a tentative
CVE-2019-1125 (but not sure if Microsoft will issue it), and that the disclosure date is not final yet. We are asked if we still wish
to present at BlackHat

28 June 2019 – We ask if AMD confirmed the issue, and we confirm we still with to present at BlackHat; we also state that we
are open towards helping for a better community sync, if needed

28 June 2019 – Microsoft states that they may have a definitive answer from AMD by the beginning of July; they also state the
tentative date for the fix – 9th of July. They also throw the idea of a possible delay for the fix, since not all parties may address the
problem in time. However, they clearly state the intended date for the fix to be 9th of July

28 June 2019 – We state that our PR/Mrkt teams are pushing for the 6th of August, and that would be the worst case scenario
date for us. We state that we are working on a technical white-paper describing the problem and how it can be abused

28 June 2019 – Microsoft stated that some parties may not be ready before 6th of August, and if it’s acceptable for us to push
the date

28 June 2019 – We state that we do not wish to jeopardize anyone, and we express our concern regarding the coordination
process, as it takes too long, since the issue is already almost a year old

28 June 2019 – Microsoft asks for the timeline, as they did not know the issue is this old

28 June 2019 – We provide the timeline, starting with the initial reporting to Intel, in August 2018

28 June 2019 – Microsoft compliments Bitdefender on putting the safety first, even if this means wasting a great chance, such
as presenting at BlackHat

28 June 2019 – We kindly ask how did Microsoft end up handling this kind of (hardware) issue

01 July 2019 – Microsoft exposes the reason behind them being in charge with this case. They also state they will release the
patches on July 6th, but won’t document the fix publicly until August 6th, to leave enough time for other vendor to test and deploy
their fixes. They also ask what we plan to do in case of a tip-off

02 July 2019 – We responded that in the case of a tip-off, we should have a coordinated communication plan, and we ask what
their plan is in this regard

30 July 2019 – Microsoft provides feedback on whitepaper, which is adjusted accordingly

06 August 2019 - Public disclosure.

[18]

White Paper

References

[1] M. a. S. M. a. G. D. a. P. T. a. H. W. a. F. A. a. H. J. a. M. S. a. K. P. a. G. D. a. Y. Y. a. H. M. Lipp, “Meltdown: Reading Kernel
Memory from User Space,” Proceedings of the 27th USENIX Conference on Security Symposium, https://meltdownattack.
com/meltdown.pdf, 2018.

[2] D. G. D. G. W. H. M. H. M. L. S. M. T. P. M. S. Y. Y. Paul Kocher, “Spectre Attacks: Exploiting Speculative Execution,” CoRR,
https://spectreattack.com/spectre.pdf, 2018.

[3] J. V. B. M. M. D. G. B. K. F. P. M. S. R. S. T. F. W. a. Y. Y. Ofir Weisse, “Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient,” https://foreshadowattack.eu/foreshadow-NG.pdf, 2018.

[4] D. M. M. L. M. S. J. V. B. D. G. D. G. F. P. B. S. Y. Y. Marina Minkin, “Fallout: Reading Kernel Writes From User Space,”
https://mdsattacks.com/files/fallout.pdf, 2019.

[5] M. L. D. M. J. V. B. J. S. T. P. D. G. Michael Schwarz, “ZombieLoad: Cross-Privilege-Boundary Data Sampling,” https://
zombieloadattack.com/zombieload.pdf, 2019.

[6] A. M. S. Ö. P. F. G. M. K. R. H. B. C. G. Stephan van Schaik, “RIDL: Rogue In-Flight Data Load,” https://mdsattacks.com/
files/ridl.pdf, 2019.

[7] M. L. M. S. R. F. C. S. M. Daniel Gruss, “KASLR is Dead: Long Live KASLR,” https://gruss.cc/files/kaiser.pdf, 2017.

[8] Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer’s Manual,” https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf, 2019.

[9] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs,” https://www.agner.org/optimize/microarchitecture.pdf,
2019.

[10] M. Godbolt, “Branch prediction,” 2016. [Online]. Available: https://xania.org/201602/bpu-part-one.

[11] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Reference Manual, 2019.

[12] Intel Corporation, “5-Level Paging and 5-Level EPT,” https://software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf, 2017.

[13] K. R. E. B. H. B. C. G. Ben Gras, “ASLR on the Line: Practical Cache Attacks on the MMU,” https://www.cs.vu.
nl/~giuffrida/papers/anc-ndss-2017.pdf, 2017.

[14] C. C. a. J. V. B. a. M. S. a. M. L. a. B. v. B. a. P. O. a. F. P. a. D. E. a. D. Gruss, “A Systematic Evaluation of Transient
Execution Attacks and Defenses,” CoRR, https://arxiv.org/pdf/1811.05441.pdf, 2018.

[15] J. Horn, “Reading privileged memory with a side-channel,” Google, January 2018. [Online]. Available: https://
googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html.

[19]

White Paper

This page is
 le

ft b
lank i

ntentio
nally

Bi
td

ef
en

de
r-W

hi
te

Pa
pe

r-S
W

AP
G

S-
CR

EA
37

64
-0

20
8-

en
_E

N

Bitdefender is a global security technology company that delivers solutions in more than 100 countries through a network of
value-added alliances, distributors and reseller partners. Since 2001, Bitdefender has consistently produced award-winning

business and consumer security technology, and is a leading security provider in virtualization and cloud technologies.
Through R&D, alliances and partnership teams, Bitdefender has elevated the highest standards of security excellence in both

its number-one-ranked technology and its strategic alliances with the world’s leading virtualization and cloud technology
providers.

More information is available at http://www.bitdefender.com/.

All Rights Reserved. © 2019 Bitdefender. All trademarks, trade names, and products referenced herein are property of their
respective owners. FOR MORE INFORMATION VISIT: enterprise.bitdefender.com.

http://www.bitdefender.com/

	Abstract
	Disclaimer
	Introduction
	The SWAPGS instruction
	The Exploit
	Challenges
	Mitigations
	Conclusions
	Glossary
	Timeline of the discovery
	References

